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0 Abstract

In this report we present famous and fundamental selections (the “Greatest Hits™”) from the K -theory
of C∗-algebras, motivated by comparison to the “commutative special case” of topological K -theory.
We aim to survey by example the ways in which techniques in analysis, homological algebra, and
topology, are woven together to obtain the proofs of the C∗-algebraic results. Familiarity with the def-
inition of topological K -theory and its basic properties is assumed.

Not only is C∗-algebraic K -theory a method for transporting tools from topological K -theory to
the noncommutative setting, but it also finds applications in the study of honestly topological ob-
jects. For instance, in (commutative!) differential geometry one can easily stumble upon orbifolds or
other so-called “singular” spaces, which are no longer manifestly topological. These spaces can often
be represented on equal footing with the original topological objects by passing to the more general
noncommutative world, and this can have great practical utility. Moreover, the K -theory of C∗-alge-
bras and its generalisations—such as to Kasparov’s K K -theory—are the natural regime in which to
attempt to generalise index theorems (such as that of Atiyah and Singer), and these results have even
found concrete applications in theoretical physics.

We first survey the (familiar) fundamental properties of the functor K0, before going on to establish
one of the historically first great achievements of the theory; the classification of Almost Finite (AF)
C∗-algebras. We then briefly highlight the higher K -groups, in order to arrive at the Bott Periodicity
theorem, and its generalisations in the noncommutative world. We conclude by connecting the C∗-
theory, via algebraic K -theory, back to the topological one—concretely establishing the rigorous sense
in which the latter is a special case of the former.

Our exposition is structured with the goal of rapidly introducing the functors and constructions
under consideration, while largely evading complex calculations in matrices or technical results in
C∗-algebras by appealing to citations. We are effectively forced to do this in order to have access to
some of the most powerful and fundamental tools of the theory—which we will then be able to apply
in following sections to prove interesting and critical theorems in K -theory that are built on these
results.

1 Why study the K -theory of C∗-algebras?

It would be dishonest to introduce C∗-algebras and their K -theory without first providing some insight
into the reasons why they have historically been of interest to mathematicians. We provide a principal
motivating example here, deferring precise mathematical descriptions until the next section. The
story of C∗-algebras begins with the following theorem of Gelfand and Naimark.

Theorem 1.1 (Gelfand–Naimark). Every C∗-algebra A is isometrically ∗-isomorphic to a C∗-algebra of
bounded operators on a Hilbert space H.

Moreover, if the C∗-algebra A is separable, then we can ensure that the Hilbert space H is as well.
Given that there is only one infinite-dimensional separable Hilbert space, this might seem particularly
disheartening to one sceptical of the potential for possible C∗-algebra structures. Fortunately, this
theorem does not remotely confine the C∗-algebra structures which occur in practice! (And from now
on, all of our Hilbert spaces will be assumed separable.)

The real reason for our interest in C∗-algebra lies in another theorem which is also ascribed to
Gelfand, and on which we will often rely;

Theorem 1.2 (Gelfand duality). There is a contravariant functor

C0 : CptHaus→AbC∗
I

from the category of compact spaces to the category of commutative unital C∗-algebras. Furthermore,
this functor is part of an equivalence (in the sense that it is as a covariant functor CptHaus→AbC∗

I
OP).

For each compact Hausdorff space X , this functor simply yields1 the set C0(X ) of continuous com-
plex valued functions on X . From the definitions to appear in the next section, this object is easily seen

1We may occasionally deal with only locally compact Hausdorff spaces, in which case C0 denotes the set of complex valued
continuous functions which vanish at infinity.
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to be a commutative unital C∗-algebra and is called the spectrum of X .
This is a principal example of the algebra–geometry duality in mathematics. Indeed, the corre-

spondence is much more fundamental than a bijection of objects; one finds that almost every topo-
logical notion associated to a space X can be transported to a dual algebraic notion for C0(X ). The
fact that C0(X ) is always commutative typically has little bearing on the algebraic statement of these
properties, and so in fact we can ask whether arbitrary noncommutative C∗-algebras posses them as
well!

We’ve simply dropped the commutativity hypothesis in our domain of discourse, and so an imme-
diate geometric interpretation of the subject at hand is no longer available. Nonetheless, we can now
say that we are studying noncommutative topology! This duality (in a more general sense) also extends
to a much wider class of objects. For example, the study of noncommutative probability amounts
to the study of von Neumann algebras (a particular restricted class of C∗-algebras) and maps from
them, while one can also study noncommutative differentiable manifolds and noncommutative affine
and projective schemes. Despite their apparent “abstractness”, these subjects can still find extremely
concrete applications; for example, the aforementioned case of noncommutative probability actually
realises a formal foundation of the theory of quantum mechanics in physics.

In the presence of a K -theory for compact topological spaces, the Gelfand duality suggests that we
should search for an extension to the noncommutative world. This is the primary goal of the coming
sections.

2 A primer on C∗-algebras

Before we begin our development of the main theory, we must be aware of its basic definitions and
constructions. Moreover, in order to avoid laborious and/or irrelevant detail, we rapidly survey these
requirements providing external references where necessary. This section really must be much more
of a directory than a primer!

Throughout the entirety of this document we will assume that all of our spaces are Hausdorff. Of
course, we must first work to define a C∗-algebra.

Definition 2.1. A Banach algebra A is a non-necessarily-unital associative algebra over the field C
(or sometimes R) which is also a Banach space, and such that the algebra and norm structures are
compatible in that ‖x y‖ ≤ ‖x‖‖y‖ for every x, y ∈ A. A map f : A → B of Banach algebras is then just a
simultaneous morphism of the Banach space and algebra structures.

An archetypal example is that of the set B(X ) of bounded linear operators from a Banach space X
to itself. If X is in addition a Hilbert space, then B(X ) becomes a C∗-algebra;

Definition 2.2. A C∗-algebra A is a complex Banach algebra equipped with an involution ∗ : A → A
satisfying the following properties:

• linearity and antimultiplicativity,

(x + y)∗ = x∗+ y∗ and (x y)∗ = y∗x∗ for all x, y ∈ A,

• and scalar antimultiplicativity,

(λx)∗ =λx∗ for all λ ∈ C and x ∈ A,

which together make A into a ∗-algebra, and

• for which the C∗-identity
‖x∗x‖ = ‖x∗‖‖x‖ for all x ∈ A

holds.

An element x ∈ A such that x = x∗ is called self-adjoint, and if x∗ = x−1 then x is called unitary.
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A morphism f : A → B of C∗-algebras is then just a morphism of algebras which also respects the
ambient involution, in that f (x∗) = f (x)∗ for every x ∈ A.2

It can be the case that a C∗-algebra A lacks a unit. In this case, it will be convenient for our pur-
poses to formally adjoin one by forming the direct sum of vector spaces A+ = A ⊕C; we equip pairs
(x,λ), (y,µ) ∈ A×C with the multiplication

(x,λ)(y,µ) = (x y +µx +λy,λµ).

If A was nonunital, then from this multiplication A+ has the new unit (0,1). Of course, we must tech-
nically now define a norm on A+ and explain how it is once again a C∗-algebra. This is a somewhat
awkward (though elementary) task, and so we refer the reader to [7] for the details. Most importantly
for this construction, we have a short exact sequence 0 → A → A+ → A+/A → 0 which always splits
when A is already unital—therefore, for A unital we have A+ ∼= A⊕C with this the full direct sum of C∗-
algebras (with multiplication is defined componentwise and the norm is the sum of the norms of each
summand). Actually, when A is nonunital A+ is in a rigorous sense the minimal unital C∗-algebra con-
taining A, but this is already beyond the scope of this introduction. Viewed under the Gelfand duality,
one finds that A+ is exactly one-point compactification; if X is compact and we let A =C0(X ) then by
forming A+ we have simply disjoint unioned-in a point, while for X non-compact the A+ construction
gives rise to a compact space (with only one extra point compared with X ). Moreover, just as in the
case3 of the one-point compactification, adjoining a unit with a superscript “+” is a functor; for every
map f : A → B there is a(n obvious) canonical map A+ → B+.

We also have quotients and tensor products of C∗-algebras as one would normally expect, with
norms defined as they would be for Banach spaces. In fact, it will prove very important to be aware
that the category of C∗-algebras has direct limits—though they are actually slightly subtle to define,
see [19]. Because our C∗-algebras will be in general noncommutative, each can have both left and
right ideals—we will use “ideal” to mean a left ideal, but the distinction will be largely immaterial. Of
particular importance is the ideal of A+ denoted by (abuse of notation) A, which is obtained from the
natural inclusion of A into A+.

Prototypical examples of C∗-algebras are C and the n×n matrices with coefficients in C—the latter
of which we will denote by Mn(C). Indeed, for arbitrary C∗-algebras A the matrix construction Mn(A)
continues to make sense, and will be heavily utilised (we take any one of the typical and equivalent
norms on n ×n matrices). We will also require n ×m matrices with entries in A, which we will denote
by Mn×m(A). Throughout the rest of this document we will use H to refer to a fixed Hilbert space, for
which both the sets of bounded linear operators B(H) on H and the compact operators K (H) make
sense (both of these sets are also C∗-algebras). Finally, the Calkin algebra B(H)/K (H) (being the quo-
tient of two C∗-algebras) is also very easily within reach. For H separable—which we will henceforth
assume—this set famously consists of two elements, 0+K (H) and I +K (H). Taking the tensor prod-
uct of a C∗-algebra A with K (H) is called stabilisation, for reasons which will become apparent as we
develop the theory. We say two C∗-algebras are stably isomorphic if their stabilisations are isomorphic.

Of great importance to in the definition of the higher K -groups will be the algebras GLn(A), defined
to the the subalgebra of Mn(A) consisting of invertible elements. We will also need in particular the
algebra GL+

n (A), defined by
GL+

n (A) = {x ∈ GLn(A+) :πA(x) = In}

for In the n×n diagonal matrix in GLn(A+) with nonzero entries the unit adjoined to A. Here, the “+”
is to be thought of not as referring to positivity, but instead the fact that we have adjoined a unit to A
and then normalised to obtained a kind of normalised general linear group.

3 The functor K0

We are now prepared enough to set forth into the world of the K0-groups of C∗-algebras. We will
endeavour to avoid throwing ourselves headlong into the possibly enormous number of technicalities

2Note that such a map is automatically bounded and even of norm at most one; this is an interesting situation where the
algebra actually completely controls the topology.

3The astute reader will note that in the case of only locally compact spaces, one-point compactification is only a functor in
the category of locally compact spaces with proper morphisms. In the context of Gelfand duality, the analogy with adjoining a
unit it still complete because the Gelfand duality functor takes every map of C∗-algebras to a proper map of spaces.
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which can arise, instead trying to focus on the bigger picture. Also, in order to develop the machinery
as rapidly as possible, we will defer concretely establishing the connection to topological K -theory for
now.

3.1 The idea of C∗-algebraic K -theory

The core idea used to construct the K -theory of a C∗-algebra A is to study the projections of A. In
analogy with the concrete case of B(H), an element p ∈ A is called a projection if it is idempotent and
self-adjoint. Because we would like K0(A) to ultimately be a group, we need an additive structure on
these elements. Given two projections p and q , their sum is still self adjoint, but we have

(p +q)2 = p2 +pq +qp +q2 = p +q +pq +qp 6= p +q,

which is unfortunate. Certainly if p and q are orthogonal projections in that pq = qp = 0, we have a
notion of an additive operation, but this is not even the case for p+p. Thus in order to make this work
we must at least find some way to make a projection p orthogonal to itself (or some version thereof).
There is an immediate a cop-out solution; formally “adjoin” more dimensions to A so that we have
two copies of p which completely “miss” one another. We would then have access to the trickery of
performing computations such as [

p 0
0 0

]
·
[

0 0
0 p

]
=

[
0 0
0 0

]
,

which then solves our problem, but replaces it with a new one; how do we add a projection matrix to
itself? Clearly, we need even more dimensions. In fact, because we might need access to arbitrarily
many dimensions, we need to bundle together all of the matrix algebras on A. The most common
(and convenient) way to do this is to form an algebraic direct limit (colimit)

lim−−→
n

Mn×n(A) = M∞(A)

by sending a matrix in Mk (A) to one in Mk+1(A) by appending a zero row and column. We shall say
that p ∈ M∞(A) has dimension n if n is the least integer such that p exists in Mn(A). Note that M∞(A)
is not a C∗-algebra because it is not complete (we only take the algebraic direct limit and not the C∗-
algebraic one in order to construct it)—but the completion is the stabilisation A⊗K (H).

Given any two projections p, q ∈ M∞(A), we now have strategy for adding them; we form the matrix

p +q =
[

p 0
0 q

]
.

However, there are now more problems. Indeed,

p +q =
[

p 0
0 q

]
6=

[
q 0
0 p

]
= q +p and

[
p 0
0 0

]
6=

[
0 0
p 0

]

which of course is terrible—but we are persistent! We must implement some equivalence relation
which ensures this is always the case, and so we are intuitively motivated to specify the natural alge-
braic condition for the equivalence of projections; namely that

p ∼ q if there exists unitary U ∈ M∞(C) such that p =U qU−1.

By conjugating, we alleviate problems to do with potential noncommutativity. Taking equivalence
classes with square brackets, elementary linear algebra shows that we have just formed a monoid
V (A) = {[p] : p ∈ M∞(A) is a projection} associated to A (the identity is the zero projection). We will
call the classes in V (A) generalised projections on A. The name V for this monoid is a homage to the
Vector Bundles of topological K -theory, which we will eventually come to.

Because it will prove useful in the coming sections, we also state without proof the following
lemma from C∗-algebra theory, which permits the use of alternative definitions of the equivalence
relation.
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Lemma 3.1. Let p, q ∈ M∞(A) be projections. Then p ∼ q if and only if

• there exists V ∈ M∞(C) such that p =V V ∗ and q =V ∗V , if and only if

• there is a continuous map (path) f : [0,1] → M∞(A) such that f (0) = p and f (1) = q.

Some examples are now in order; first we consider the simplest possible case of V (A) for A =
C, and thus really the object M∞(C). Because there is a unitary operator U : Cn → Cn taking any
k-dimensional subspace of Cn to any other, generalised projections in M∞(C) are exactly classified
by their rank. Thus V (C) ∼= N = {0,1,2, . . .}. In the case of A = Mn(C) there is an obvious isomorphism
M∞(Mn(C)) ∼= M∞(C), and therefore V (Mn(C)) ∼=V (C) ∼= N as well (we will soon see an analogous result
for the infinite case as well). Indeed, we have M∞(Mn(A)) ∼= M∞(A) and this result for any C∗-algebra
A.

The other canonical example of a C∗-algebra is B(H) for H a Hilbert space. Here, the theory is
essentially the same for that of C; there is a unitary operator taking one subspace S of H to another
subspace S′ exactly when S and S′ are of the same dimension. Thus we have V (B(H)) ∼= N ∪ {∞}
with the monoid addition n +∞ = ∞+n = ∞. Meanwhile, the compact projections on H are ex-
actly those which are of finite rank, and so V (K (H)) ∼= N. Finally, for the Calkin algebra we have
V (B(H)/K (K )) ∼=V ({0+K (H), I +K (H)}) = {0,∞} with the same monoid addition as that for B(H).

At this point, as in the topological case, we will take the Grothendieck completion V (A) to yield a
group GV (A) consisting of formal differences of generalised projections on A. For unital C∗-algebras
A, this will be exactly the zeroth K -group of A! In the general case it turns out that this is not exactly the
right definition, in that the presence of a unit in A has apparently very important implications (as we
will see in Section 7, this is completely analogous to the distinction between the topological K -theory
of compact and locally compact spaces).

We will instead have to add a unit to A via the A+ construction, but this is slightly dishonest—
clearly A+ isn’t the C∗-algebra we started with! In fact, the only information we generically know about
A+ is that it has the (canonically included) ideal A. It will be of great utility of us to study the quotient
of A+ by A:

Proposition 3.2. Every map f : A → B of C∗-algebras gives rise to a map f∗ : V (A) →V (B), and therefore
f∗ : GV (A) →GV (B) (of the same name), in a functorial way. In particular, the quotient map ρB : A →
A/B gives rise to map ρB : GV (A) →GV (A/B).

Proof. Given f : A → B , the map just sends [p] ∈ M∞(A) to [ f (p)] ∈ M∞(B) (where f (p) applies f to
every entry of p). The fact that M∞ is a functor then gives that this map is functorial and respects
equivalence classes.

3.2 General definition

The definition of K0 can now finally be given.

Definition 3.3. For A an arbitrary C∗-algebra, we define

K0(A) = ker(ρ∗ : GV (A+) →GV (A+/A)).

The latter quotient A+/A is always C, and so ρ∗ is a map GV (A+) → GN = Z. It is immediate that K0

is a group, and one easily sees that because V and G are functors then K0 is as well (the small matter
of whether elements of K0(A) remain in the kernel of ρ∗ under an induced map f∗ : K0(A) → K0(B) is
easy to check). As we have already begun to do, we will use a subscript asterisk to denote maps of the
various algebraic groups at our disposal which are induced by maps of C∗-algebras.

The presence of a kernel in the definition may seem at first unusual, but it is not much work to
define the relative K0 groups K0(·, ·) in such a way that K0(A) ∼= K0(A+, A) (see [2], for example, where
it is explained that this equivalence of definitions is a consequence of the Strong Excision Theorem
for C∗-algebras). Our definition also has the advantage of still being relatively concrete—it is easy to
see that G , V , and K0 respect direct sums, for example. The following proposition shows that the
definition of K0 is particularly easy in the unital case.
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Proposition 3.4. The sequence

0 K0(A) GV (A+) Z 0⊂ ρ∗

is exact for every C∗-algebra A, with the first nonzero map the inclusion of sets, and ρ∗ the map used to
define K0(A). Furthermore, it always splits, and when A is unital K0(A) ∼=GV (A).

Proof. The sequence is clearly exact, and the inclusion ι : C → A+ of the subalgebra generated by the
adjoined unit induces a map ι∗ : GV (C) ∼= Z → GV (A+) which is a right-inverse of ρ∗. Therefore we
have a splitting GV (A+) ∼= K0(A)⊕Z. Finally, when A is unital we also have A⊕C ∼= A+, and the induced
map GV (A)⊕Z ∼=GV (A+) composed with the inclusion 0⊕Z →GV (A)⊕Z exactly recovers ι∗ (by the
definition of the former map). Thus, the isomorphism GV (A)⊕Z ∼= K0(A)⊕Z itself splits as a direct
sum, and in particular we get an isomorphism GV (A) ∼= K0(A).

Our definition strongly resembles the necessary modification which must be made to topological
K -theory in order to deal with only locally compact spaces. However, there are also already some
points of divergence; for example, the is no natural multiplicative structure which we can impose on
K0(A) for general A. Once we connect K0 to algebraic K -theory, we will see that this is the consequence
of the lack of a general “noncommutative tensor product” of modules over noncommutative rings.
We will also see a different attempt to impose additional structure on K0 in Section 4, which works
particularly well for the class of Almost Finite (AF) C∗-algebras. Note as well that up until this point
we have not used any C∗-algebra structure, and that the entire construction thus far goes through for
arbitrary rings—this will change shortly.

We calculated V (A) above for common C∗-algebras A, and now given the definition of K0(A) and
Proposition 3.4 we can do the same for the K0 group. Indeed, we immediately find that K0(C) ∼=
K0(Mn(C)) ∼= K0(K (H)) ∼= Z, while K0(B(H)) ∼= K0(B(H)/K (H)) ∼= 0 due to the presence of an “∞”
element in the corresponding monoid obtained from V . We are yet to stumble upon a C∗-algebra A
which has torsion in its K -theory, but tame examples4 certainly do exist. We take this opportunity
to mention the particular example of K -theory torsion provided by the Cuntz algebras On . They are
notable for being the first separable infinite simple C∗-algebras to be explicitly constructed. Indeed,
every simple infinite C∗-algebra has every Cuntz algebra On as a quotient! The details can be found
in [4] or [19] (and require some of the general theory which we are yet to develop), but the idea of
the construction is very intuitive. The point is to select n > 1 isometries (U j )n

j=1 on a Hilbert space H

which together have independent and spanning image projections, i.e in that

• each U j is an isometry; for each 1 ≤ j ≤ n we have U−1
j U j = I for I the identity on H , and

• the U j ’s have independent and spanning projections, in that I = ∑
j=1 U jU−1

j (this implies that

the projections U jU−1
j are orthogonal).

The Cuntz algebra On is then defined to be the smallest sub-C∗-algebra of B(H) containing all of the
operators U j —and it turns out that this construction is unique up to isomorphism. (The algebra On

must be defined concretely in this way, without simply imposing these relations on a free C∗-algebra
generated by n symbols, because free C∗-algebras do not exist in general.) The reason why this should
“obviously” give rise to a K0 group with torsion is because when taking equivalence classes of the
projections U jU−1

j orthogonality allows us to calculate that

[I ] =
∑

j=1
U jU−1

j

= ∑
j=1

[U jU−1
j ] = n[I ].

Thus, notwithstanding unexpected degeneracy in K0(On), we expect an element of order n. It is the
content5 of [4] that there is no such degeneracy, and in fact K0(On) ∼= Z/(n −1)Z.

4As a consequence of the results of Section 7, we see for example that any compact space X with torsion in its topological
K0-group gives rise to a C∗-algebra C0(X ) which has torsion in its C∗-algebraic K0-group as well. We also see in Subsection 6.2 a
way to construct C∗-algebras with arbitrary K -theories (by essentially taking very many copies of the compact operators K (H)
and employing a sly exact sequence).

5Once we reach Section 5, we will be able to make sense of one of Cuntz’s other results that K1(On ) ∼= 0 for all n > 1.
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The proofs of the fundamental theorems on the functor K0 to come could be said to be more than
lightly seasoned with matrix calculations; and they are necessitated by the fact that M∞ lies at the
heart of the definition of K0. In order to carefully negotiate the road ahead without unnecessarily
triggering any matrix explosions, we conclude this section by stating two useful properties of elements
of K0(A) which follow from elementary calculations in linear algebra, by rearranging the elements
of representative matrices given the definition of the addition in K0 and the equivalence relation on
projections defining V (A) (and using Lemma 3.1 where necessary). Complete proofs can be found in
[16] and [19].

Proposition 3.5. Let A be a C∗-algebra, and [p]− [q] ∈ K0(A) for projections p, q ∈ Mn(A+). Then:

(i) There exists m,k ∈ N with m ≥ k and another projection p ′ ∈ Mm(A+) such that we have the re-
finement [p]− [q] = [p ′]− [Ik ], with Ik the k ×k identity matrix.

(ii) We have [p] = [q] if and only if there exists m,k ∈ N such that there is a path in Mm+k (A+) (the
additional k dimensions provide “extra room” for the path) between the block matricesp 0 0

0 Im 0
0 0 0

 and

q 0 0
0 Im 0
0 0 0

 .

3.3 Fundamental properties of K0

In this section we will establish some fundamental properties of the K0 functor. We first verify the
half-exactness of K0, which is an absolute necessity if we are to construct the crown jewel of K -theory,
the canonical six-term exact sequence. The following elementary lemma from abstract algebra will be
required.

Lemma 3.6. Let

0 A B C 0
f g

be an exact sequence of C∗-algebras. Then there exists a unique (isomorphism) h : C → B/im f such that
the diagram

0 0

0 A C 0

B

0 im f B/im f 0

0 0

f

f

h

g

ρim f⊂

commutes and is exact.

Proof. This is essentially the first isomorphism theorem for C∗-algebras.

Proposition 3.7 (Half-exactness). Let

0 A B C 0
f g

be an exact sequence of C∗-algebras. Then the sequence

K0(A) K0(B) K0(C )
f∗ g∗

is also exact.
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Proof. It is an immediate consequence of Lemma 3.6 that we may assume without loss of generality
that A is an ideal of B , that we have C = B/A, that f is the inclusion, and that g is the projection
ρA : B → B/A. It thus remains to show that the sequence

K0(A) K0(B) K0(B/A)⊂ ρA∗

is exact.
We now follow the argument of [19]. First, by Proposition 3.5 each element of K0(A) is of the form

[p]− [In] with p a projection such that p − In ∈ Mk (A) for some k ∈ N. Thus 0 = ρA(p − In) = ρA(p)−
ρA(In), and so ρA(p) = ρA(In). Hence ρA∗([p]− [In]) = [ρA(p)]− [ρA(In)] = 0, which shows that we at
least have a complex.

Now suppose that [p]− [In] is an element of K0(B) such that ρA∗([p]− [In]) = [ρA∗(p)]− [In] = 0.
Then Proposition 3.5 together with Lemma 3.1 imply that there are integers m,k ∈ N and a unitary
matrix U ∈ Mm+k ((B/A)+) such that in Mm+k ((B/A)+) we haveIn 0 0

0 Im 0
0 0 0

=U

ρA∗(p) 0 0
0 Im 0
0 0 0

U−1.

Because multiplication by elementary matrices may be performed via continuous paths (i.e. there is a
path with endpoints before and after performing the multiplication), once again Proposition 3.5 and
Lemma 3.1 give that there is a unitary matrix V ∈ M2m+2k (A+) such that

ρA(V ) =
[

U 0
0 U−1

]
.

We then form the projection q by (we correct the dimensions of the multiplication by adding suffi-
ciently many zero rows and columns)

q =V

p 0 0
0 Im 0
0 0 0

V −1.

In particular, we have slightly abused block matrix notation above, with zeros representing block zero
matrices if necessary. We will continue in this manner for the remainder of the proof. The point is that
under the image of ρA (because ρA is a group homomorphism) we have that

ρA(q) = ρA(V )

ρA(p) 0 0
0 Im 0
0 0 0

ρA(V )−1

=U

ρA(p) 0 0
0 Im 0
0 0 0

U−1

=

In 0 0
0 Im 0
0 0 0

∼ In+m .

Because this last matrix has entries just zero and the multiplicative identity, it is in M2m+2k (A+) (and
not just M2m+2k (B+)). Now by construction the matrix V exhibits the fact that

q ∼
[

p 0
0 Im

]
, and moreover we have p ∼

[
p 0
0 Im

]
.

Therefore (outer square brackets on matrices denote taking an equivalence class)

[p]− [In] =
[

p 0
0 Im

]−
[

In 0
0 Im

]= [q]− [In+m].

Because q is a matrix with entries in A+ only, this completes the proof.
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As we mentioned in the introduction to this subsection, half-exactness of K0 is absolutely neces-
sary for the (extremely useful) six-term exact sequence. Thus Proposition 3.7 provides justification for
the perhaps at-first unintuitive definition of the K0 functor; the functor GV is not half-exact! Indeed,
consider the C∗-algebra A =C0(R2), consisting of the continuous functions on R2 vanishing at infinity.
Then A has no unit, and by the vanishing condition cannot have any projections which are not zero.
The same is true for any matrix algebra Mn(A), and therefore V (A) ∼= 0 ∼= GV (A). However, the uniti-
sation A+ corresponds to the one-point compactification of R2 under the Gelfand duality. This is just
the sphere S2, for which it can be shown (e.g. in [2]) that K0(C0(S2)) ∼= Z2 using Bott Periodicity. The
additional projection corresponding simply to the always-unity function on S2 has nontrivial image
in K0(C0(S2)/C0(R2)) ∼= K0(C), and therefore we actually have K0(A) ∼= Z, which is nontrivial unlike the
group for A obtained from GV . Also of note is the fact that we have no hope of extending this result
to an exact sequence on its own by prepending and appending zero groups—for example there are
typically more unitary matrices in M∞(A) compared to M∞(B), which increases the coarseness of the
equivalence relation in V (B) compared to V (A).

The proof of Proposition 3.7 is indicative of the large amount of detailed matrix manipulations
which are typical in the proofs of fundamental theorems in the K -theory of C∗-algebras (even despite
the fact that we have evaded most of these details using the extremely handy Proposition 3.5). Indeed,
it gets much, much, worse—the “extra room” always available in M∞ is frequently required, and the
proof of significant theorems such as Bott Periodicity lead to the construction of absolutely enormous
matrices. For this reason, in order to keep the size of this account under control and to avoid quot-
ing an excessive number of properties of projections on C∗-algebras, we only give the main ideas the
proofs of the next two properties which we list.

Proposition 3.8 (Continuity). The functor K0 is continuous, in that it preserves direct limits of C∗-alge-
bras.

Proof sketch. The proof of this property is essentially the repeated application the fact that projec-
tions in an inductive limit A of C∗-algebras {A j } can be approximated in norm arbitrarily closely by
projections in some A j for a suitably chosen index j (that is free to vary). One then executes an ε-δ
argument in order to ensure that the induced map lim−−→ j

K0(A j ) → K0(A) is both injective and surjective

(the former requires the greater amount of work).

Proposition 3.9 (Stability). If A is a C∗-algebra, then K0(A ⊗K (H)) ∼= K0(A), so that K0 is invariant
under stabilisation (tensoring with K (H)).

Proof sketch. The proof consists of checking that the map A → A ⊗K (H) defined by x 7→ x ⊗ I1 for I1

a rank 1 projection on H actually induces an isomorphism K0(A) → K0(A ⊗K (H)). The reason that
this possibly works is that the map Mn(A) → Mm(A) for n ≤ m defined by appending zero rows and
columns actually induces isomorphisms of K -theory, and this in turn follows because in the defini-
tion of K0 we immediately take the matrix algebra M∞(A). The remainder of the proof inserts these
isomorphisms in the definition of the inductive limit in order to use universality to guarantee that we
actually get an isomorphism K0(A) → K0(A⊗K (H)) out.

Finally, we will deal with “homotopy invariance” of K0. We first introduce some definitions which
the reader should find to be completely familiar from the topological setting.

Definition 3.10. We call morphisms f , f ′ : A → B homotopic if they are homotopic as maps in the
traditional sense. If g is a map B → A, then f and g give a homotopy equivalence if f ◦ g and g ◦ f are
both homotopic to the identity. By analogy we also introduce the terminology deformation retraction,
and in particular a map f : A → B is contractible if it is homotopic to a constant map (we can always
ensure that this constant is zero). A C∗-algebra A is contractible if the identity on A is contractible.

Proposition 3.11 (Homotopy invariance). Homotopic maps f , g : A → B induce the identical maps
f∗, g∗ : K0(A) → K0(B).

Proof. A homotopy ht : [0,1]× A → B from f to g gives rise to a family of induced maps ht∗ : [0,1]×
M∞(A+) → M∞(B+). For each [p]−[q] ∈ K0(A) we therefore have that f∗(p) is homotopic to g∗(p) (and
likewise for q), and thus the proof is completed by Lemma 3.1.

9



Corollary 3.11.1. If A is a contractible C∗-algebra, then K0(A) ∼= 0.

Proof. The zero C∗-algebra 0 has V (0) ∼= 0, and so Proposition 3.11 gives that K0(A) ∼= K0(0) ∼= 0.

Continuing the complete analogy with topology, we now make the following definitions (espe-
cially consider the case where A =C0(X ) for a compact space X under Gelfand duality!). The notation
“C ([0,1] → A)” just means the set of continuous functions from [0,1] to A, which is always a C∗-algebra
under pointwise operations and the supremum norm.

Definition 3.12. Let A be a C∗-algebra. Then the cone on A is the C∗-algebra

C A = {s ∈C ([0,1] → A) : s(0) = 0}.

The suspension of A is the C∗-algebra

ΣA = {s ∈C ([0,1] → A) : s(0) = s(1) = 0},

which is just
ΣA = {s ∈C A : s(1) = 0}.

Both of these constructions are easily seen to be functors, with a map f : A → B of C∗-algebras induc-
ing a map f∗ : C A →C B by post-composition with f (and similarly for the suspension Σ).

Indeed, these constructions possess the topologically expected homotopy properties;

Lemma 3.13. Let A be a C∗-algebra. Then

• the cone C A is contractible, and

• if A is contractible, the suspension ΣA is as well.

Proof. For the first point, the trick is simply to squeeze everything into the “point” of the cone; there
is a homotopy ft : [0,1]×C A →C A defined by

ft (s) = (λ 7→ s(tλ))

which explicitly exhibits the fact that C A is contractible.
Now suppose that we have a homotopy ft : [0,1]× A → A from idA : A → A to the constant zero

map on A. Then we have another homotopy f̂t : [0,1]×ΣA →ΣA defined by

f̂t (s) = (λ 7→ f̂t (s(λ)))

is a homotopy between the identity onΣA and the map constantly equal toλ 7→ 0 (i.e. the zero element
in ΣA).

We finally note the following two obvious but useful facts for cones and suspensions.

Proposition 3.14 (Exact sequence for cones). Let A be a C∗-algebra. Then there is an exact sequence

0 ΣA C A A 0⊂ ev1

with ev1 : C A → A the map which evaluates at 1.

Proof. The claim and the next follow by inspecting definitions (e.g. for s ∈C A, we have s ∈ΣA exactly
when s(1) = ev1(s) = 0).

Lemma 3.15. Every exact sequence

0 A B C 0

of C∗-algebras gives rise to an exact sequence

0 ΣA ΣB ΣC 0 .

In this section, we have established (among other things) four major properties of K0; continuity,
stability, half-exactness, and homotopy invariance. We mention in the concluding remarks (Section 8)
the result of Cuntz that modulo some initial conditions, these more than determine the K0 functor on
a very large class of C∗-algebras!
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4 A first application: classifying AF-algebras

As an application of some the properties of the functor K0 that we have just developed, we will devote
some time to establishing one of the historically first achievements of the K -theory of C∗-algebras in
its own right. We will get the opportunity to explore unique properties of the C∗-algebra theory (as
opposed to the topological one) as we try to compensate for the lack of a multiplicative structure in
K0 as was pointed out above.

4.1 Addressing the lack of multiplicative structure

That the noncommutativity of general C∗-algebras A prevents the implementation of a multiplicative
structure in K0(A) is certainly quite unfortunate. Indeed, as we will see in the sequel, the additive
structure of K0(A) cannot even distinguish between finite dimensional C∗-algebras of the form

A = Mn1 (C)⊕·· ·⊕MnN (C)

and
B = Mm1 (C)⊕·· ·⊕MmN (C)

for (n j )N
j=1 and (m j )N

j=1 sequences of integers which are not equal up to permutation. Proposition 3.9

also shows that we cannot distinguish between stabilisations of A and itself, for instance. By extracting
as much additional structure from A (which is related to K0(A)) as we can, we will hope to be able to
salvage this information.

Throughout this section we will consider the case of a unital C∗-algebra A, with the extensions in
the nonunital case to be left until the end. Regardless however, in the case of a possibly non-unital C∗-
algebra A, observe that there is a canonical monoid map ι : V (A) →GV (A) defined by ι([p]) = [p]− [0]
(for [0] the zero projection). Furthermore, because the sequence

V (A) V (A+) V (A+/A) ∼= N
ρ

is a complex, we actually get a well-defined map ι : V (A) → ker(ρ : GV (A+) → GN) = K0(A) (we call
several maps ι and ρ). Due to the obvious analogy with the inclusion N → GN, the idea is to is to
single out the subset K +

0 (A) = ι(V (A)) ⊂ K0(A). Because K +
0 (A) is closed under the operations of the

monoid structure conferred by K0(A), we would like to think of K +
0 (A) as the “positive” elements of

K0(A). Indeed, for arbitrary groups we can make the following definition.

Definition 4.1. A positive cone K of an arbitrary group G is a subset such that for e ∈G the identity we
have

• e ∈ K ,

• G = {g −h : g ,h ∈ K }, and

• if k−1 ∈ K for some k ∈ K then k = e.

If G is abelian, a cone K ⊂G immediately induces a G-invariant partial order by

g ≥ h if g −h ∈ K , g ,h ∈G .

Of course, the subset K +
0 (A) ⊂ K0(A) need not always be a positive cone—for example, in Sub-

section 3.2 we saw the Cuntz algebras On for which K0(On) ∼= Z/(n −1)Z and so cannot possibly have
K +

0 (On) a positive cone—but when it does we will call the combined data (K0(A),K +
0 (A)) the ordered

K0 group of A. A morphism of ordered groups is a morphism of the underlying groups which is also
order-preserving.

There is a second piece of additional data which is readily available to us, and will prove invaluable
in completing our classification. For each C∗-algebra A, we define the scale

Ξ(A) = {[p] : p ∈ A is a projection, i.e. p ∈V (A) which is one-dimensional}.
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For example, because projections on Cn are exactly classified up to equivalence by their rank, we have
Ξ(Mk (C)) = {0,1, . . . ,k}. Thus we can distinguish matrix algebras over C of different dimensions! In
general, the scale data will permit us to make distinction between C∗-algebras which are stably equal
(isomorphic after some stabilisation), but are nonetheless distinct. Depending on our purposes, we
will think of Ξ(A) as a subset of V (A), or of K0(A) via ι. Putting all of this data together, we obtain the
scaled and ordered, or simply extended, K0 group of A: (K0(A),K +

0 (A),Ξ(A)) (under the right circum-
stances).

4.2 Studying finite dimensions

The purpose of this subsection is to determine the data stored in the scaled and ordered K0 groups of
all of the finite-dimensional C∗-algebras. We will first record the following (easy) result on the structure
of sums of matrix algebras.

Proposition 4.2. Let A = Mn1 (C)⊕·· ·⊕MnN (C) be a sum of matrix algebras. Then

• K0(A) = ZN ,

• K +
0 (A) = NN , and

• Ξ(A) = {(x1, . . . , xN ) ∈ NN : x j ≤ n j }.

Proof. We noted above that K0 respects direct sums, and that K0(Mn(C)) ∼= Z, and so therefore K0(A) ∼=
ZN . It is also easily seen that K +

0 (A) ∼= NN , given that K +
0 (C) ∼= N. Finally, by definition Ξ also respects

direct sums, and this gives
Ξ(A) ∼= Nn1 ×Nn2 ×·· ·×NnN .

It is the content of the following theorem that every finite-dimensional C∗-algebra is isomorphic
to a sum of matrix algebras, and so in fact we have computed the extended K -theory of all finite di-
mensional C∗-algebras. In doing so, we have found that the extended K0 groups of such algebras com-
pletely classify them up to isomorphism. The classification theorem admits an unreasonably long
proof via algebraic techniques and the theory of the spectrum of Hilbert spaces (frankly, it is awful,
e.g. see [14]). However because of the positive implications of the result on our classification, we give
the idea6 of an elegant proof in [16] which at its core exploits the extension of Gelfand’s theorem for
locally compact Hausdorff spaces (we skip the details when we return to the realm of linear algebra).

Theorem 4.3 (Classification of finite-dimensional C∗-algebras). Let A be a finite-dimensional C∗-al-
gebra. Then A is unital, and there exists a finite sequence of nonnegative integers (n j )N

j=1 such that

A ∼= Mn1 (C)⊕·· ·⊕MnN (C).

Proof. Let B ⊂ A be a maximal abelian sub-C∗-algebra of A (such an object exists by Zorn’s lemma).
Then by (an extension of) Gelfand’s theorem, B is isomorphic to C0(X ) for X an only locally compact
space. But B is finite dimensional, so X must at most be the disjoint union of finitely many points.
Therefore, in particular, X is compact and therefore B is unital. It is an easy computation that this unit
must also be a unit of A.

The remainder of the proof rests on the consideration of objects which are by now dear to our
heart—projections on A and D . We define a finite family of projections on X by collecting together
the characteristic functions on each of X ’s finitely many points, and then use Gelfand duality to obtain
projections on D . It can then be shown that each pair of such projections have image either equal
or disjoint excluding 0, from which we obtain a decomposition of A in terms of the direct sum of
individual matrix algebras over C (we check that we have formed a system of matrix units, to which
general theory then applies and provides the desired decomposition).

6We skip the proof of several results from the theory of maximal abelian subalgebras of C∗-algebras, and of systems of matrix
units, but they are all easy calculations in C∗-algebras and linear algebra. They can be found in [7].
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We now turn to the problem of studying the morphisms between these finite-dimensional sums.
The notion of when a morphism φ : K0(A) → K0(B) is a morphism of scaled groups will be useful, and
we simply define it to mean that φ(Ξ(A)) ⊂ Ξ(B). The extension to the case of almost-finite algebras
presented in the next section then essentially hangs on the following proposition (we roughly follow
the argument of [19]).

Proposition 4.4. Suppose that A = Mn1 (C)⊕·· ·⊕MnN (C) and B = Mm1 (C)⊕·· ·⊕MmM (C).

(i) Let f : A → B be a morphism inducing f∗ : K0(A) → K0(B). Then:

• The map f∗, thought of as a map ZN → ZM , acts as multiplication by a matrix in MN×M (Z).

• The i th row and j th column of this matrix is the number of times Ti , j the (unique) irreducible
representation Mni → Mm j appears as a decomposition of f as a direct sum of irreducible
representations.

(ii) If Φ : K0(A) → K0(B) is a morphism of scaled groups then there exists a map f : A → B of C∗-
algebras such that Φ= f∗.

Proof. The first part of Point (i) is trivial, and the second part follows simply because the rank of a
projection on the Mni summand of A has its rank multiplied by Ti , j once restricted to Mm j and viewed
under the action of f∗. To show Point (ii), suppose that Φ : K0(A) → K0(B) is a morphism of scaled
groups and is represented by a matrix T ∈ MN×M . The idea is to define maps

f j : Mn1 (C)⊕·· ·⊕MnN (C) → Mm j (C)

by

f j (S1 ⊕·· ·⊕SN ) =


QT1, j (S1) 0 · · · 0

0 QT2, j (S2) · · · 0
...

...
. . .

...
0 0 0 QT2,N (SN )

 ,

with Q j (S) itself a j -fold repetition of the matrix S along the diagonal;

Q j (S) = j rows




S 0 · · · 0

0 S · · · 0
...

...
. . .

...

0 0 0 S

 .

If each f j is well-defined, we would then be able to form the map f : A → B by summing over the f j ’s,
and then by Point (i) we would exactly have K0( f ) =Φ by construction.

Of course, this matrix could (and in general, would) be too large to be an element of Mm j (C).
But because Φ is a morphism of scaled groups for v = (n1, . . . ,nN ) ∈ Ξ(A) we have Φ(v j ) ∈ Ξ(A), and
therefore in particular ∑

k=1
T j ,k nk ≤ m j

for each 1 ≤ j ≤ M . This is precisely the desired size constraint, and completes the proof.

Even without the classification of Theorem 4.3 and calculation of Proposition 4.2, this result shows
that the ordered, scaled K0 groups are a complete invariant of the C∗-algebras which are finite sums of
matrix algebras over C. In preparation for the coming generalisation, we note without proof a linear-
algebraic lemma on the relationship between morphisms of finite-dimensional C∗-algebras which in-
duce the same maps on K0-groups.

Lemma 4.5. Suppose that A and B are both finite direct sums of matrix algebras over C, for which
two morphisms φ,ψ : A → B induce the same map φ∗ = ψ∗ : K0(A) → K0(B). Then φ and ψ differ by
conjugation by a unitary element of B+.
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4.3 The case of almost-finite dimensions

Definition 4.6. A C∗-algebra A is almost finite, or simply AF, if it is the inductive limit of a sequence
{A j ,α j : A j → A j+1} of finite dimensional C∗-algebras. As we will only be dealing with unital C∗-alge-
bras in this section, we require that the morphisms α j be unit-preserving.

Viewed under the Gelfand duality, unital AF-algebras are actually exactly the compact totally dis-
connected spaces.

In the finite-dimensional case, we were not able glean any distinguishing information from the
positive cone K +

0 (A) without further refining it into the scale Ξ(A). The utility (really, distinguishing
power) of the ordered K0 groups in isolation in the almost-finite case is made apparent by the following
result, which shows that the extended K0 group is a complete invariant for AF-algebra algebras. The
weaker version of the theorem, also stated, establishes that ordered K0 groups really form a middle-
ground between K0 on its own and the full extended K0 groups.

Theorem 4.7 (Elliott [5], Fundamental theorem of AF-algebras). Let A and B be unital AF-algebras.
Every isomorphism Φ : K0(A) → K0(B) of ordered and scaled groups gives rise to an isomorphism f :
A → B of C∗-algebras. If Φ is only an isomorphism of ordered groups, then A and B are at least stably
isomorphic.

Proof. If A and B are AF-algebras, then there exactly exist direct limit systems {A j ,α j } and {B j ,β j } so
that

lim−−→
j

A j = A, and lim−−→
j

B j = B.

We also have canonical morphisms α̂ j : A j → A and β̂ j : B j → B , which we will frequently exploit. By
virtue of the continuity of K0 (and technically V and G as well), we are guaranteed that the mapsα j ,β j ,
and their “hatted” versions are all scale and order preserving. The proof then hinges on the fact that,
by suitably intertwining these direct limit systems, we can ensure the existence of an isomorphism
A ∼= B effectively by the universality of direct limits.

Concretely, we will exploit the following elementary lemma from the theory of direct limits.

Lemma 4.8. Suppose that {A j ,α j : A j → A j+1} and {B j ,β j : B j → B j+1} are direct limit systems, for
which there exist intertwining morphisms g j : A2 j−1 → B2 j and f j : B2 j → A2 j+1 which are compatible
with the direct limit systems, in that we have an infinite commutative diagram

· · · A2 j−1 A2 j A2 j+1 · · ·

· · · B2 j−1 B2 j B2 j+1 · · ·

α2 j−2

g j

α2 j−1 α2 j α2 j+1

g j+1f j−1

β2 j−2 β2 j−1

f j

β2 j β2 j+1

.

Then there exists a pair of mutually inverse C∗-algebra morphisms g∞ : A → B and f∞ : B → A.

The only problem is to actually construct the morphisms g j and f j ! The idea for this is to use
Point (ii) of Proposition 4.4 to bootstrap from morphisms of the K0 groups of the finite-dimensional
algebras in the direct limit systems. To begin, the “finite-end” of the relevant diagram is

A1 A2 A2 · · ·

B1 B2 B3 · · ·

g1 g2f1 ,

for which we have a corresponding diagram

K0(A1) K0(A2) K0(A3) · · ·

K0(B1) K0(B2) K0(B3) · · ·

φ1 φ2ψ1
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with all of the dotted morphisms (and in particular φ j and ψ j ) yet to be constructed. Dealing with
the general case requires additional notational clutter, and the extension will be clear, so we restrict
ourselves to finding the indicated first pieces of the intertwiners.

First, by Proposition 4.2 there is an isomorphism K0(A1) ∼= ZN1 which we will endeavour to avoid
writing, instead simply identifying the two groups. Then we have generators

e1 = (1,0, . . . ,0), . . . ,eN1 = (0, . . . ,0,1)

of K0(A1) which we can map via α̂1 : K0(A1) → K0(A) and then via Φ : K0(A) → K0(B) into K0(B). Be-
cause K0 is continuous, we can find some k ∈ N so that for every generator e j ∈ K0(A1) there is some

generator e ′j ∈ K0(Bk ) such that Φ(α̂1(e j )) = β̂k (e ′j ) (this is just the statement that elements of K0(B)

factor through the subobjects, then using the fact thatΦ is an isomorphism). Without loss of generality
(by forgetting pieces of the direct limit system), we can assume that k = 2.

The plan, of course, is to define the morphism φ1 : K0(A1) → K0(B2) by φ1(e j ) = e ′j . We will then

have Φ(α̂1∗(e j )) = β̂2∗(φ1(e j )) for every generator of K0(A1), and hence φ1 will exactly satisfy the re-

quired commutativity condition Φ ◦ α̂1∗ = β̂2∗ ◦φ1. However, this morphism will not lift by Proposi-
tion 4.4 unless we can ensure that φ1 is scale-preserving. Fortunately, by composing with the maps β j

each e ′j (and every multiple thereof which is also in the scale) must eventually be in the scale of some

Ξ(B j ), and because there are finitely many such generators and distinct multiples, we can delete ad-
ditional intermediary objects from the direct limit system {B j ,β j : B j → B j+1} in order to ensure that
φ1 is actually scale preserving as well.

By Proposition 4.4 we therefore now have a lift g1 : A1 → B2. By repeating the same argument with
the labels associated to A and B interchanged (and fixing some indices, and using Φ−1), we also get
an order and scale preserving map ψ1 : B2 → A3 with a lift f1 : B2 → A3. The final problem is that the
triangle

A1 A2 A3

B2

g1

α1∗ α2∗

f1

(4.1)

need not actually commute, and so our lift was slightly premature. In order to rectify this observe that
by construction the maps φ1 and ψ1 satisfy the equations Φ◦ α̂1∗ = β̂2∗ ◦φ1 and Φ−1 ◦ β̂2∗ = α̂3∗ ◦ψ1,
and therefore we have

α̂3∗ ◦ (ψ1 ◦φ1) =Φ−1 ◦ β̂2∗ ◦φ1 =Φ−1 ◦Φ◦ α̂1∗ = α̂1∗.

This equality factors through a finite-dimensional algebra Ak , in that there is some k ∈ N for which we
have

α3→k∗ ◦ (ψ1 ◦φ1) =α1→k∗

with α j→ j ′∗ the morphism which is just the composition α j ′−1∗ ◦α j ′−2∗ ◦ · · · ◦α j∗. We can now “fix”
the morphism ψ1 by post-composing it with α3→k∗, so without loss of generality we can assume that
k = 3 and the desired commutativity relation ψ1 ◦φ1 =α1→3∗ is satisfied.

Now considering the lifts f1 and g1, we still do not have commutativity of the triangle (4.1), but
we do have ( f1 ◦ g1)∗ =α1→3∗, which is almost what we desire. The proof is completed by Lemma 4.5,
which provides that the composite f1 ◦ g1 must differ from α1→3 by post-composition with a map
which is conjugation by a unitary. Redefining f1 to include this post-composition, the triangle (4.1)
commutes, and by induction we obtain an entire infinite family to which Lemma 4.8 applies.

Now suppose thatΦ is not scale preserving. Then it is easily seen thatΞ(A⊗K (H)) is all of K +
0 (A⊗

K (H)) (and similarly for B), and thus by Proposition 3.9 we have an isomorphism Φ̂ : K0(A⊗K (H)) →
K0(B ⊗K (H)) which is order and (automatically) scale preserving. The previous part of the theorem
now applies to Φ̂ (we must use continuity to insert tensor products with K (H) everywhere in the
above diagrams), and this completes the proof.

There is a generalisation of this theory to nonunital C∗-algebras, and those scaled ordered groups
which arise as the extended K0 groups of AF-algebras have also been completely classified. Much work
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has been done attempting to extend the classifying power of this construction to more general settings
than AF-algebras, but this has happened in general with little success (for example, a counterexam-
ple to direct extension of this classification to all of the C∗-algebras is provided by C0(R2), given our
discussion of its K -theory in the previous section). Comprehensive accounts of these attempts can be
found in [15, 2].

5 Higher K -groups

In this section we rapidly introduce the K1 group and summarise its properties, before establishing
the (expected, given the topological case) isomorphism between K1 and K0Σ and defining the higher
K -groups. We conclude by showing how this map is a special case of the very important index map,
and we also easily obtain split exactness of the Kn functors as a consequence of our work.

5.1 The functor K1

In comparison to the K0 functor, the functor K1 is much easier to define—no Grothendieck completion
is required, and there are no potential problems due to the absence of a unit:

Definition 5.1. Let A be a C∗-algebra. As in the case of the family of algebras Mn(A), we can take a
direct limit to from the C∗-algebra

GL+
∞(A) = lim−−→

n
GL+

n (A)

where we include T ∈ GL+
n (A) into GL+

n+1(A) by T 7→
[

T 0
0 1

]
. Then the group K1(A) is defined by

K1(A) = GL+
∞(A)/GL+

∞(A)0,

for GL+∞(A)0 the path component of GL+∞(A) containing the identity. (In particular, GL+∞(A) is a topo-
logical group under the induced topology.) Elements of K1(A) are then represented by particular in-
vertible elements of Mn(A+) (for some n) which can be viewed as elements of GL+∞(A) by direct sum
with the “infinite identity matrix”. Of great utility is the fact that under this quotient we can assume
that the representatives are themselves unitary.

It is an elementary fact about the paths in GL+
n that the operation

[T ]+ [S] 7→ [T S]

is a commutative group multiplication (see [19, 2] for the details).

In order to get somewhat of a handle on this definition, we will first calculate K1(C). Indeed, let
U ∈ GL+

n (A) be unitary. Then in fact U =V + In for V ∈ Mn(A) unitary and In the n ×n identity matrix
in Mn(A+) defined above. We can then define a continuous map ft : [0,1]×Mn(A) → Mn(A) by ft =
e t lnV by employing the Borel functional calculus (which is actually available for any von Neumann
algebra other than C as well). Thus we have a path connecting V and thus U to the respective identity
matrices of their groups. This shows that GL+∞(A) consists of only a single path component, and hence
K1(C) ∼= 0. This is a prime example of large machinery in analysis (in this case the functional calculus)
solving problems in the more algebraic setting of K -theory.

In fact, K1(A) can be defined using the kernel of a map from K1(A+) in the same way that K0(A)
was defined in terms of GV (A+) ∼= K0(A+). However, this turns out to always give the same definition
because K1(A) ∼= K1(A+) always due to the (forthcoming) properties of K1 given below combined with
the fact that K1(C) ∼= 0.

Furthermore, despite the materially different definition of K1 in comparison to K0, the four fun-
damental properties of Subsection 3.3 which hold for K0 also hold for K1 by modifying the matrix
computations in the proofs; thus, we conclude this subsection by only quickly listing these proper-
ties (without proof) below. As a consequence of continuity in particular, we obtain K1(A) ∼= 0 when-
ever A is almost-finite—this follows because the argument above for K1(C) extends to matrix algebras
K1(Mn(C)), and therefore any almost-finite dimensional C∗-algebra as well.
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Proposition 5.2 (Half-exactness). Let

0 A B C 0
f g

be an exact sequence of C∗-algebras. Then the sequence

K1(A) K1(B) K1(C )
f∗ g∗

is also exact.

Proposition 5.3 (Continuity). The functor K1 is continuous, in that it preserves direct limits of C∗-alge-
bras.

Proposition 5.4 (Stability). If A is a C∗-algebra, then K0(A ⊗K (H)) ∼= K0(A), so that K1 is invariant
under stabilisation (tensoring with K (H)).

Proposition 5.5 (Homotopy invariance). Homotopic maps f , g : A → B induce the identical maps
f∗, g∗ : K1(A) → K1(B).

5.2 The suspension map

In complete analogy with the topological case, we desire (and can find) a suspension map (actually, an
isomorphism) θA : K1(A) → K0(ΣA) for each C∗-algebra A. The corresponding isomorphism the other
way (i.e. K1Σ→ K0) is called the Bott map, and will be defined in the next section.

Perhaps because the suspension map (along with the more general index map to be defined below)
is not induced by the action of a functor, the construction of each θA is technically very challenging
and requires a great deal of unappealing matrix calculations. Indeed, in [19] Wegge-Olsen advises in
such cases to “...fasten seat belts and in particular to keep an eye on the sizes of the rather overwhelm-
ing number of matrices involved.” Here we avoid this prospect and instead prefer to simply give the
definitions and general idea of the construction.

Theorem 5.6. There is a natural transformation θ : K1 → K0Σ.

Proof sketch. Fix a C∗-algebra A. There are five major steps:

1. Given a representative T ∈ GL+
n (A) of an element of K1(A), we must construct an element of

K0(ΣA)—at the very least, we need a loop of projections on (a matrix algebra of) A. The idea is
to set

S =
[

T 0
0 T −1

]
∈ GL+

2n(A)

and note that because multiplication by elementary matrices can be performed via continuous
homotopy, there is a path Rt : [0,1]×GL+

2n(A) → GL+
2n(A) from S to I2n . In order to make this into

a loop of projections, we conjugate the projection defined by

În =
[

In 0
0 0

]
∈ GL+

2n(A).

That is, we define R̂t : [0,1]×GL+
2n(A) → GL+

2n(A) by R̂t = Rt ÎnR−1
t . Then

R̂0 = SÎnS−1 =
[

T T −1 0
0 0

]
= În ,

and R̂1 = I2n În I2n = În , so we have a loop. Moreover, we have

ρA(R̂t ) = ρA(Rt )ρA(În)ρA(R−1
t ) = ρA(În) = În

for all t ∈ [0,1], and so R̂t has the claimed codomain.
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Thus R̂t is in GV (A+), but the problem is that it need not a priori be in K0(A). Fortunately, by
construction the difference R̂t − În has entries in A, and so we can safely define θA : K1(A) →
K0(ΣA) by

θA([u]) = [R̂t ]− [În].

As would appear likely after making so many arbitrary choices in the definition of a function,
checking well-definedness (and then injectivity and surjectivity!) is a great deal of work. This
requires a tremendous amount of matrix computation; we do not do this here, instead only
listing our objectives if we were to proceed.

2. We are required to show that this definition of θA is independent of the homotopy class of u as
chosen above, and it will be very difficult to show that θA is a morphism of groups unless we
show also that θA([u]) is independent of the homotopy we took.

3. To show injectivity we must explicitly construct a path between representatives u and v of [u]
and [v] respectively, which have the same image under θA .

4. The proof of surjectivity is a difficult matrix calculation relying on the fact that every element of
K0(A) is represented by a difference [p]− [In] as in Proposition 3.5.

5. Finally, showing naturality is not too difficult—we just expand the definitions.

See [2, 19] for an elaboration of these final steps (note however that the “index map” defined below is
a generalisation of this construction).

Given the content of Theorem 5.6, we are immediately motivated to make the following (partially
alternate/re-)definition.

Definition 5.7. For each n ∈ N, we define the functor Kn by (Σn is just n-fold application of the sus-
pension functor)

Kn = K0Σ
n .

5.3 The index map

On the path to establishing the six-term short exact sequence, we devote the remainder of this sec-
tion to at least defining the connecting map ∂ : K1(A/B) → K0(B) permitting us to obtain the exact
sequence

· · · K1(B) K1(A) K1(A/B) K0(B) K0(A) K0(A/B)∂ ∂ (5.1)

for each C∗-algebra A and ideal B of A. In particular, each “run” of three groups in the sequence is
exact by half-exactness of the functor K j (for f ∈ {0,1}), and the role of ∂ is to connect these maps
together (via suspension, we will be able to obtain all of the required connecting maps given just ∂ :
K1(B/A) → K0(B)).

We will at least define ∂. Indeed, it is not too difficult to see how one could arrive at the following
definition by generalising their successful attempt at defining θ above.

Definition 5.8. Let A be a C∗-algebra and let B be an ideal of A. For each [U ] ∈ K1(A/B) (i.e. with
U ∈ GL+

n (A/B) for some n ∈ N), find a V ∈ GL+
2n(A) which projects to the matrix[

U 0
0 U−1

]
∈ GL+

2n(A/B).

Then the index map ∂ : K1(A/B) → K0(A) is defined to act on [U ] by

∂([U ]) = [V ÎnV −1]− [În]

for În ∈GL+
2n(A) defined in blocks by

În =
[

In 0
0 0

]
.
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In the special case that B = B(H) and A = K (H), we get an index map ∂ : K0(B(H)/K (H)) →
K0(K (H)). Composing with the canonical isomorphism K0(K (H)) → Z of Subsection 3.2 gives a way
of computing an integer associated to element of the Calkin algebra of H . In fact, this corruption of ∂
computes the famous Fredholm index ([3] provides a solid introduction), and thus confers the index
map its name.

Theorem 5.9 (Index map existence). The map ∂ : K1(B/A) → K0(B) of Definition 5.8 is well-defined,
and the resulting ∂ makes (5.1) into a long exact sequence.

Moreover, using Lemma 3.6 to obtain a map a ∂ : K1(C ) → K0(B) for general short exact sequences
0 → A → B → C → 0, the family of maps called ∂ define a natural transformation from K1 to K0 in the
sense that every commutative diagram

0 A B C 0

0 A′ B ′ C ′ 0

of exact sequences gives rise to a commutative and exact diagram

K1(A) K1(B) K1(C ) K0(A) K0(B) K0(C )

K1(A′) K1(B ′) K1(C ′) K0(A′) K0(B ′) K0(C ′)

∂

∂

. (5.2)

The proof of the well-definedness of ∂ is very difficult, and is rivalled in length only by the proof of
the Bott Periodicity theorem. One must show

• that ∂ does not depend on any of the data (lifts and representatives) used to define it, and then

• one must then actually check that it makes the sequence (5.1) exact (neither part of which is
easy).

One then inspects the definitions of the maps in (5.2) in order to directly check exactness and com-
mutativity, and for naturality only the square involving ∂ need be checked (see [2], or for a more com-
prehensive account [19]).

As consolation, we will at least show (as promised) how Theorem 5.9 gives an easy proof of Theo-
rem 5.6, and therefore that the latter is a special case of the former.

Corollary 5.9.1 (Reproof of Theorem 5.6). There is a natural isomorphism θ : K1 → K0Σ.

Proof. Let A be a C∗-algebras. By Proposition 3.14 there is a short exact sequence

0 ΣA C A A 0 .

Therefore Theorem 5.9 provides7 that the sequence

K1(ΣA) K1(C A) K1(A) K0(ΣA) K0(C A) K0(A)∂

is exact. But cones are contractible by Lemma 3.13, and therefore ∂ : K1(A) → K0(ΣA) is actually an
isomorphism. The fact that θ = ∂ is a natural transformation then completes the proof.

Finally, we will use the additional generality of the index map ∂ (over the suspension map) in order
to obtain a useful result (in its own right), on the split exactness of the K -group functors. It will also
prove useful in slightly simplifying the task of proving the Bott Periodicity theorem.

7Once again, we use the general result of Lemma 3.6 in order to generalise an exact sequence obtained from an actual honest
quotient of C∗-algebras.
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Proposition 5.10 (Split exactness of Kn). The functor K0 is split exact. Therefore, the functor Kn is split
exact for every n ∈ N.

Proof. A split exact sequence

0 A B C 0

by Theorem 5.9 combined with Lemma 3.6 gives rise to a split exact sequence

K1(A) K1(B) K1(C ) K0(A) K0(B) K0(C )∂ .

This forces the connecting map ∂ to be zero, and the rightmost map must be surjective because it has
a section, splitting it. Therefore the rightmost three terms break off into a split exact sequence

0 K0(A) K0(B) K0(C ) 0 ,

as desired. The fact that there is a natural isomorphism Kn
∼= Kn−1Σ (or, depending on one’s defini-

tions, an equality) then completes the proof.

6 Bott Periodicity, and a “Thom isomorphism”

Given the connection between topological and C∗-algebraic K -theory (which is made particularly con-
crete in Section 7), it should be expected that we have a Bott Periodicity theorem for C∗-algebras—and
especially in at least the commutative case! As it turns out, we do, and we also have a “Thom isomor-
phism” which is actually much more closely related to Bott Periodicity (it is a high-powered generali-
sation) than the Thom isomorphism in the topological case.

6.1 Traditional Bott Periodicity and the 6-term exact sequence

Indeed, the obvious analog of the celebrated Bott Periodicity holds in the case of general C∗-alge-
bras. The proof of the Bott Periodicity theorem is notoriously intricate, even if possible to formulate
in quite elementary terms, and therefore cannot possibly be included here. Instead, we overview the
map which induces the Bott Periodicity and introduce related theorems known as the P-V sequence
and the Connes “Thom” isomorphism, these latter two results being specific to C∗-algebraic K -theory.
We conclude the section by noting how both Bott Periodicity and the P-V sequence follow from the
Connes “Thom” isomorphism (which, despite the name, is a vast generalisation of Bott Periodicity
and not the Thom isomorphism!).

Theorem 6.1 (Bott Periodicity). There is a natural isomorphism β : K0 → K1Σ. Therefore, for every C∗-
algebra A we have Kn(A) ∼= Kn(Σ2 A) for every n ∈ N (by Theorem 5.6).

Proof sketch. Let A be a C∗-algebra. The crux of the proof is define the Bott map βA : K0(A) → K1(ΣA),
for which it can then be shown quite easily that βA defines a component of a natural transformation.
One then performs the quite arduous task of verifying that each map βA is actually an isomorphism.
We primarily follow the exposition of [2], and also [19], in which the additional details may be found.

We will at least give the definition of the Bott map. Fix a projection p ∈ M∞(A+) with some dimen-
sion n. Then we have a loop in GLn(A+) defined by

sp (z) = (z −1)p + In = (z −1)p +


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

 .

The map sp is invertibly-valued (and thus we have a companion map s−1
p valued in the inverse of sp ),

and has sp (1) the identity. It therefore represents a class in K1(ΣA). The Bott map is then defined
simply by

βA([p]− [q]) = [sp s−1
q ].
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This is well defined as a function because (by using compactness of S1 to verify continuity) homotopic
projections p and p ′ give rise to homotopic maps sp and sp ′ , and in particular this shows additivity.
The map βA also obviously preserves the identity.

We have actually defined the components of a natural transformation because for any map f : A →
B we have that

( f∗ ◦βA)([p]− [q]) = [ f (sp s∗q )] = [ f (sp ) f (sq )∗] = [s f (p)s∗f (q)] = (βB ◦ f∗)([p]− [q]).

We reduce the proof to the case of unital A by using a variant of the short five lemma applied to the
diagram (with the C∗-algebra A arbitrary)

0 K0(A) K0(A+) K0(C) 0

0 K1(ΣA) K1(ΣA+) K1(ΣC) 0

βA βA+ βC

i.e. we need only show that the two rightmost vertical arrows are isomorphisms, given that the rows
are exact by split exactness of the functors K0 and K1 (this is Proposition 5.10).

The actual body of the proof can then proceed in many ways. Of note is the fact that Atiyah’s fa-
mous method for the case of topological K -theory actually generalises to the “noncommutative case”;
we can show both injectivity and surjectivity by approximating arbitrary loops as Laurent polynomials
and then simply polynomials... see [18] or [2] for the familiar details.

This method is truly “K -theoretic”, in the sense that it downplays the C∗-structure. Proofs us-
ing honestly-noncommutative machinery include Cuntz’s proof via the unilateral shift operator and
Toeplitz algebras (see e.g. [11]), later proofs by Atiyah [1] and Phillips [12] also using Toeplitz opera-
tors, and Nest, Natsume, and Elliott’s proof in [6] via the study of particular so-called crossed products
of C∗-algebras.

It follows immediately that the infinite exact sequence (5.1) wraps around on itself, giving rise to
the famous six-term exact sequence of the K -theory of C∗-algebras.

Theorem 6.2. Let 0 → A → B →C → 0 be an exact sequence of C∗-algebras. Then the following six term
sequence is exact.

K0(A) K0(B) K0(C )

K1(C ) K1(B) K1(A)

∂∂

In particular, the map ∂ : K0(C ) → K1(A) is the dotted arrow in the diagram

K1(ΣC ) K0(ΣA)

K0(C ) K1(A)

∂

βC θB

with the top row coming from the long exact sequence associated to the short exact sequence defined in
Lemma 3.15.

The connecting map ∂ : K0(C ) → K1(A) is called the exponential map, because of the special case
where A is an ideal of B and C = B/A. There, given a difference [p]− [In] in K0(B/A) the map ∂ acts
by finding q ∈ M∞(B+) such that ρB (q) = p, and then uses the the functional calculus to emit ∂([p]−
[In]) = [e i 2πq ].
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6.2 Surjectivity of K0 and K1

The establishment of the six-term exact sequence above (finally!) provides the opportunity for a first
neat application which combines all of the machinery we have developed thus far; we will show that
the functors K0 and K1 are surjective on the abelian groups. The problem essentially reduces to some
elementary group theory, after we establish the following definitions and pair of easy lemmas.

Definition 6.3. The mapping cylinder for a morphism f : A → B of C∗-algebras is

Y f = {x ⊕ s : A⊕C ([0,1] → B) : s(1) = f (x)}.

The mapping cone is similarly defined by

C f = {x ⊕ s ∈ A⊕C B : s(1) = f (x)},

and is obviously a subset of the corresponding mapping cylinder.

Lemma 6.4. Given a morphism f : A → B of C∗-algebras, we have that A is a deformation retract of the
mapping cylinder Y f . Therefore Kn(A) = Kn(Y f ) for all n ∈ Z.

Proof. The idea is just to “crush” the function part C ([0,1] → B) of Y f . Indeed, the map g t : [0,1]×Y f →
Y f defined by

g t (x ⊕ s) = x ⊕ ((1− t )s + t f (x))

suffices.

Lemma 6.5. Given a morphism f : A → B of C∗-algebras, the sequence

0 C f Y f B 0⊂ ev0

with ev0 : Y f → B defined by x ⊕ s 7→ s(0) is exact.

Proof. If x⊕ s ∈C f then in particular s(0) = 0 by hypothesis, and therefore ev0(x⊕ s) = 0. Conversely, if
ev0(x ⊕ s) = s(0) = 0, then given that x ⊕ s ∈ Y f , this is precisely the condition that x ⊕ s ∈C f .

Proposition 6.6. Let G be an abelian group. Then there exists a C∗-algebra G∗ such that K0(G∗) ∼= 0 and
K1(G∗) ∼=G.

Proof. We will essentially transfer the canonical free resolution/presentation of G to the K -theory
world via the six-term exact sequence (the main idea is credited to Higson and Brown, and can be
found in [19]). First, consider the short exact sequence

0 kerπ Z{G} G 0π

where π : Z{G} →G is the canonical map from the free abelian group on the elements of G to G , which
is completely defined by specifying for each n ∈ Z and g ∈G thatπ(ng ) is the n-fold sum of g with itself.
Now, kerπ is a subgroup of a free abelian group, and therefore is itself free. It will be problematic for
us that the inclusion kerπ ,→ Z{G} can give rise to linear combinations involving negative coefficients,
and so we must actually refine this short exact sequence to a general one

0 Z{I } Z{J } G 0
φ ψ

for some indexing sets I and J , so that each i ∈ I is sent via φ to a positive linear combination in
Z{J }. This is always possible by “hiding the negatives in the maps ψ”; we form an exact sequence

0 → kerπ⊕Z{G}
φ−→ Z{G}⊕Z{G}

ψ−→ G → 0 by defining the ψ of x ⊕ y to take the difference π(x)−π(y),
and defining8 φ to ensure that the sequence remains exact. For each i ∈ I there are thus nonnegative
integers ki , j such that φ(i ) =∑

j∈J ki , j j .

8This can be achieved for example by defining φ on x ⊕ y by sending the “positive part” of the inclusion of x ∈ kerπ into Z{G}
to the first copy of Z{G} and the “negative part” to the second copy, and sending the y part unchanged to both components
(when x and y are both nonzero we sum).
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The idea is to replicate the free groups Z{I } and Z{J } with copies of the compact operators; we
define A =⊕

i∈I K (H) and B =⊕
j∈J K (H), so that K0(A) ∼=⊕

i∈I Z and K0(B) ∼=⊕
j∈J Z, while K1(A) ∼=

K1(B) ∼= 0 (by continuity). We then have a map f : A → B ⊗K (H) which sends x in the copy of K (H)
with index i ∈ I to x⊗Iki , j in each copy of K (H)⊗K (H) in B respectively indexed by j ∈ J (only finitely
many of these ki , j ’s are nonzero at a time). Note that here we use In to denote a rank n projection in
K (H). Now because [x ⊗ Iki , j ] is sent to ki , j [x] under the isomorphism χ : K0(B ⊗K (H)) ∼= K0(B), the
map f is such that χ◦K0( f ) =φ.

By Lemma 6.5 and then Theorem 6.2 we thus have a six-term exact sequence

K0(C f ) K0(A) K0(B)

0 0 K1(C f )

∂∂ ,

where we have used Lemma 6.4 to replace K j (Y f ) with K j (A) for j ∈ {0,1}. But the map K0(A) → K0(B)
is essentially just φ, which is injective. We therefore have an exact sequence

0 K0(A) ∼= Z{I } Z{J } ∼= K0(B) K1(C f ) 0
φ ∂

which proves that K1(C f ) ∼=G ! Letting G∗ =C f then completes the proof.

The general statement of the surjectivity of K0 and K1 is now an easy consequence of Bott Period-
icity.

Theorem 6.7. Let G and G ′ be abelian groups. Then there exists a C∗-algebra A such that K0(A) ∼= G
and K1(A) ∼=G ′.

Proof. By Proposition 6.6 there exist C∗-algebras B and B ′ so that K1(B) ∼=G , K1(B ′) ∼=G ′, and K0(B) ∼=
K0(B ′) ∼= 0. Therefore, setting A =ΣB ⊕B ′ we have

K0(A) ∼= K1(B)⊕K0(B ′) ∼=G and K1(A) ∼= K0(B)⊕K1(B ′) ∼=G ′,

as desired.

6.3 Generalisations: Connes’ “Thom” Isomorphism and the P-V sequence

That our remarks concluding the “proof” of Bott periodicity referenced crossed products of C∗-alge-
bras is quite topical, for Nest, Natsume, and Elliott’s method can be generalised to give a proof of the
so called Connes “Thom” Isomorphism. The purpose of this following development is to sketch the
statement of this result, and show how the other famous Pimsner-Voiculescu (P-V) sequence follows
as a corollary. These results stand on their own in sharp contrast to the results of topological K -theory,
where they have no directly analogous statement. In order to introduce them, we must first establish
the following firmly C∗-algebraic construction;

Definition 6.8. Let A be a C∗-algebra, and let Aut(A) be the C∗-automorphism group of A equipped
with the topology induced by pointwise convergence. Given a continuous group homomorphism T :
G → Aut(A) from any locally compact group G (we will only actually care about the cases G = Z and
G = R), we can then form the crossed product A nT G through a slightly elaborate construction (for
which he have neither the time nor necessity to fully explain):

• The idea is to consider pairs of representations of A and G on the same Hilbert space H . Pairs
(ρ : A →B(H),σ : G →B(H)) which are compatible in the sense that

σ(g )ρ(x)σ(g )∗ = ρ(φg (x))

for every g ∈G and x ∈ A are called covariant representations of φ.
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• Because G is a locally compact group, to each covariant representation is associated a certain
normed associative algebra with involution called the convolution algebra C(ρ,σ) for the auto-
morphism φ. This is the set Cc (G → A) of compactly supported continuous functions G → A
with a with a norm defined by a convolution integral (which we will not describe here). This
norm is submultiplicative, and so the completion of each convolution algebra is a C∗-algebra.

• We can define another norm on Cc (G → A) by taking the supremum over all of the norms on the
convolution algebras associated to each covariant representation, and again under the comple-
tion we obtain a C∗-algebra.

• The resulting object actually satisfies a universal property, and is called AnφG , the crossed prod-
uct of A with G by φ.

Of note is the fact that the crossed product of an abelian C∗-algebra with an abelian group need not
be abelian, which is a significant obstacle to the transfer of the results of this subsection to topological
K -theory. On the other hand, when A =C0(X ) (for X a compact space) actions T : G → Aut(A) define
parameterised families of continuously-varying homeomorphisms of X (by Gelfand duality), and so
the analogy is far from completely broken.

The primary result on the calculation of the K -theories of crossed products is the following cele-
brated theorem.

Theorem 6.9 (Connes “Thom” Isomorphism). Let A be a C∗-algebra and let T : R → Aut(A) be a con-
tinuous group homomorphism. Then

Kn(AnT R) ∼= Kn+1(A)

for every n ∈ N.

This is a “Thom isomorphism” only in the sense that a version of the topological Thom isomor-
phism gives for a k-dimensional vector bundle E → X that K n(E) ∼= K n+k (X ) for every n ∈ N (in K n(E)
we consider E a locally compact base space in its own right). One method of proof of Theorem 6.9
proceeds (quite intuitively) by carefully deforming an arbitrary R action into the trivial one, but this is
not quite as easy as it sounds—see 10.9 of [2] for one possible elaboration of this idea.

As a trivial example of the immense power of this result, consider the trivial action T : R → Aut(A)
on a C∗-algebra A defined by T (r ) = idA for all r ∈ R. Then (by the definition of the convolution prod-
uct)

AnT R ∼= A⊗C0(R) ∼=ΣA,

in which case Theorem 6.9 is exactly the statement of the Bott Periodicity theorem!
Now let φ ∈ Aut(A) for A a unital C∗-algebra. Then observe that we automatically have an action of

Z on A in the sense that the map T : Z → Aut(A) defined by T ( j ) =φ j is automatically continuous (φ j

is just j -fold composition, and makes sense for negative j becauseφ is invertible). Thus, we are free to
write Anφ Z without any ambiguity. Crossed products with Z are thus at least as easy to obtain as C∗-
automorphisms of A, and hence technical tools which deal with them are of great utility. The Pimsner-
Voiculescu (P-V) exact sequence is a cornerstone in this regard, and was established prior to Connes’
result during the study of the K -theory of so-called irrational rotation algebras by the aforenamed.
As another example of the power of the Connes isomorphism, and to highlight the P-V sequence, we
conclude the section by showing how the latter follows from the former.

Theorem 6.10 (Pimsner-Voiculescu exact sequence). Let A be a unital C∗-algebra, and let φ ∈ Aut(A).
Then the following six-term sequence is exact everywhere.

K1(A) K1(Anφ Z) K0(A)

K1(A) K0(Anφ Z) K0(A)

ι∗

id−φ∗id−φ∗

ι∗
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The map ι : A → Anφ Z is canonically provided be the definition of the crossed product. The unlabelled
connecting maps were originally constructed from an extension

0 → A⊗K (H) →T (A,φ) → Anφ Z → 0

with T (A,φ) called a “Toeplitz extension” (see [13]).

Proof sketch. We only explain how to obtain the six-term exact sequence. In fact, this result follows
almost immediately from Theorem 6.9 by applying Green’s result [8] on Morita equivalence. We will
instead elect to navigate via relative elementary means as in [2], through the mapping torus of φ de-
fined by

Mφ = { f : [0,1] → A : f (1) =φ( f (0))}.

This is a C∗-algebra.
Now, there is an exact sequence

0 ΣA Mφ A 0⊂ ev0

with the first nonzero map the inclusion (if f (0) = f (1) = 0, then f (1) = 0 = φ(0) = φ( f (0))), and the
second is the evaluation-at-0 map f 7→ f (0). Indeed, it is trivial that ev0(ΣA) = {0}, and conversely if
ev0( f ) = f (0) = 0 subject to the condition that f (1) = φ( f (0)) = φ(0) = 0, then f ∈ ΣA. This then gives
rise to a six-term exact sequence (by Theorem 6.2)

K1(A) K0(Mφ) K0(A)

K1(A) K1(Mφ) K0(A)

δδ . (6.1)

The trick is to use Mφ to bootstrap the induced Z-action into an induced R-action, for which The-
orem 6.9 will then apply. Indeed, define φ̂ : R → Aut(Mφ) by (we consider the zero-fold composition
of a functor with itself to be the identity, and for invertible maps define negative integral exponents in
the obvious way)

φ̂t ( f : [0,1] → A) =
(
s 7→ (φbtc ◦ f )(s + t −btc)

)
.

That this map is continuous is true by the definition of the mapping torus Mφ; indeed, we have
φn( f (1)) =φn−1( f (0)) for every f ∈ Mφ and n ∈ N.

We can now state and apply9 (a special case of) a famous theorem—the Takai duality—which
transports a similar result of Takesaki for von Neumann algebras to the case of C∗-algebras.

Theorem 6.11 (Takai duality for mapping cones). Let φ ∈ Aut(A), and φ̂ : R → Mφ the induced action
as described above. Then

Mφnφ̂ R ∼= (Anφ Z)⊗K (H).

Applying the K j functor to both sides of this isomorphism and then using stability, we have

K j (Mφnφ̂ R) ∼= K j ((Anφ Z)⊗K (H)) ∼= K j (Anφ Z).

But then by Theorem 6.9 we obtain

K j (Mφnφ̂ R) ∼= K j+1(Mφ).

By Bott periodicity the six term exact sequence of (6.1) becomes

K1(A) K1(Anφ Z) K0(A)

K1(A) K0(Anφ Z) K0(A)

δδ ,

9Because we have left the definition of a crossed product somewhat imprecise, we must take the conclusion of Theorem 6.11
at face value—despite the fact that is a significant specialisation of the general result, and (relatedly) is easier to prove.
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as desired. One finally sees that ∂ = id−φ∗ by a direct calculation, which essentially exploits the fact
that ea+b = eaeb in the explicit (special case) formula for the exponential map ([2] has the details).

By generalising the proof of exactness of the P-V sequence, we can also obtain analogous exact
sequences for other crossed products (e.g. with Zn), but the study of such crossed products is a rich
subject in its own right and we would not be able to give it the respect it deserves in the short time we
have to spend. Indeed, much is yet to be known; see [2] for a survey of the state-of-the-art.

We end this section by noting the existence of many additional results in C∗-algebraic K -theory
which we have not yet covered and do have direct analogs in the topological case; for example, we
have a Künneth theorem for an extremely large class of C∗-algebras, but once again we must end the
discussion here.

7 The connection to topological K -theory

In rounding out our exposition, we conclude by making rigorous the link between topological K -theory
and the C∗-algebraic one. Historically, the following results were developed essentially completely in
reverse order, and inspired the entire generalisation of topological K -theory to the C∗-algebra case in
the first place!

7.1 Phase one: Reinterpreting topological K -theory

If there is to be any connection between topological K -theory and the K -theory of C∗-algebras hereto-
fore developed, we must find a way to relate the two theories’ principal objects of study. That is, we
must find a way to relate topological objects associated to a base space X (in this case, complex vector
bundles) to some kind of algebraic objects associated to a C∗-algebra. Furthermore, there is only one
sensible C∗-algebra to choose at that; C0(X ).

Let Vect(X ) denote the category of finite-dimensional complex vector bundles over the base space
X (not isomorphism classes). We first introduce the following algebraic definitions.

Definition 7.1. Let M be a module over a ring R.

• If there exists another R-module N such that M ⊕N is free, then M is said to be projective.

• If there is a finite subset of M such that the smallest10 R-submodule of M containing this subset
is all of M , then M is said to be finitely generated. Equivalently, M is finitely generated if for some
n ∈ N there is a surjective module map Rn → M .

Let R -Mod denote the category of modules over a ring R, and let ProjFin(R) denote the full sub-
category of R -Mod given by those R-modules which are finitely generated and projective. We are now
ready to establish the first pieces of the equivalence;

Proposition 7.2. There is a functor Γ : Vect(X ) →C0(X )-Mod. If in addition X is compact, then in fact
Γ maps into ProjFin(C0(X )).

Proof. The point is to observe that the sections of a vector bundle are a module over C0(X ). The
ring C0(X ) acts just by pointwise multiplication, Γ(X ) is an abelian group in its own right, and these
structures are compatible. Maps of E → F of vector bundles send sections of E to sections of F (and
this happens functorially, because function composition is associative). This makes Γ into at least a
functor from Vect(X ) to C0(X )-modules.

Now fix a vector bundle p : E → X for X compact. It is an elementary theorem of the theory of
vector bundles11 (for instance, Proposition 1.4 of [9]) that for X compact, there exists another vector
bundle p ′ : F → X such that E ⊕F is isomorphic to a trivial bundle Cn × X (for some n ∈ N). Because
the section functor Γ clearly respects direct sums, it follows that

Γ(E)⊕Γ(F ) ∼= Γ(E ⊕F ) ∼= Γ(Cn ×X ) ∼= Γ(C×X )n ∼=C0(X )n .

10Concretely, given a set of R-modules each containing a common set S, we can take their intersection.
11It is a curious fact that this result is essentially trivial in the noncommutative case (it is effectively the content of Proposi-

tion 3.5).
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This shows that both Γ(E) is a projective module (it is a direct summand of the free module C0(X )n),
and is finitely generated (the n generators of C0(X )n project down to Γ(E), and must still generate).

The greater miracle is that there is a “partner” functor the other way!

Proposition 7.3. For X compact, there is a functor ∆ : ProjFin(C0(X )) → Vect(X ).

Proof. Let M ∈ ProjFin(C0(X )) be arbitrary. By assumption, there exists an n ∈ N and a C0(X )-module
N such that there is an isomorphism φ : C0(X )n → M ⊕N . We have the projection π : M ⊕N → M and
injection ι : M → M ⊕0 → M ⊕N module maps, and thus can form a diagram

C0(X )n M ⊕N M M ⊕N C0(X )n

P

φ π ι φ−1

.

The composite P = φ−1 ◦ ι ◦π ◦φ is in particular an idempotent module map C0(X )n → C0(X )n . For
each x ∈ X , we thus have a (linear) projection Px : Cn → Cn induced by P . In particular, we have a
continuous function P : X → Mn(C).

The idea is to define
∆(M) = {(x, v) ∈ X ×Cn : v ∈ imPx },

equipping ∆(M) with the subspace topology. We claim that the projection p : ∆(M) → X defined by
p(x, v) = x gives a vector bundle. Now, each fibre p−1(x) is certainly a vector space of dimension
rankPx , and so to show ∆(M) is a vector bundle it remains to show that we have local trivialisations.

Fix x ∈ X . Then the fibre p−1(x) has some basis {v1, . . . , vk } for some k ≤ n, and by the definition
of ∆(M) we have that Px v j = v j for every 1 ≤ j ≤ k. By extending this set to a basis of Rn , we can then
form the “characteristic matrix”

χy =
[

Py v1, . . . ,Py vk , vk+1, . . . vn

]
for each y ∈ X . Because P is continuous, we have a continuous map χ : X → Mn(X ). The key is that
by constructing χ in this way we have ensured that χx is of full rank. The determinant function is
continuous, and therefore there exists a neighbourhood U of x such that χ has full rank on all of U .
But this in particular implies that the maps ψ j (y) = (y,Py v j ) : X → Cn give a linearly independent set
{ψ1(y), . . . ,ψk (y)} for all y ∈U (these are just the first k columns of χy ). Therefore we have constructed
k linearly-independent local sections at x ∈ X , from which a local trivialisation is readily obtained.

Hence ∆(M) is a vector bundle over X for every M ∈ ProjFin(C0(X )). Let f : N → M be a map of
finitely generated projective C0(X )-modules, and let P : X → Mn(C) and Q : X → Mm(C) be the con-
tinuous maps associated to N and M respectively in the above construction. We have a commutative
diagram (with isomorphisms φ : C0(X )n → N ⊕N ′ and ψ : C0(X )m → M ⊕M ′)

C0(X )n N C0(X )n

M C0(X )m M C0(X )m

P

f̂

π◦φ

f

φ−1◦ι

id

ψ−1◦ι

Q

π◦ψ ψ−1◦ι

,

whence we obtain a module map f̂ : C0(X )n → C0(X )m and hence continuous map f̂ : X → Mn×m .
This defines the data of a map f∗ :∆(N ) →∆(M) by

f∗(x, v) = (x, f̂ (x)v),
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which is clearly continuous and fibrewise linear, and in particular f̂ (x)v ∈ imQ by the commutativity
of the diagram (π ◦ψ is a left inverse of ψ−1 ◦ ι). Thus we define ∆( f ) = f∗, and this is obviously12

functorial as is seen by adding another “rung” to the diagram.

These two pieces assemble to give the following theorem of Swan [17].

Theorem 7.4 (Serre–Swan, analytic version). The functors Γ and ∆ together determine an equivalence
of categories ProjFin(C0(X )) ∼= Vect(X ) for any compact space X .

Proof. First let M ∈ ProjFin(C0(X )). Then by definition, we have (using the notation of the previous
propositions)

Γ(∆(M)) = {
s : X →∆(M) : p ◦ s = id

}
= {s : X → X ×Cn : s(x) ∈ {x}× imPx ∀x ∈ X }
∼= {s : X → Cn : s(x) ∈ imPx ∀x ∈ X }

= {s : X → Cn : s ∈ imP }

= imP.

In fact, imP is canonically isomorphic to M , due to the fact that the following diagram commutes
(without the dotted arrow)

M C0(X )n M C0(X )nφ−1◦ι

id

P

π◦φ φ−1◦ι

π◦φ

,

combined with the fact that the dotted arrow is a left inverse of ψ−1 ◦ ι.
Now let p : E → X be a vector bundle, and let f : E ⊕F → X ×Cn be an isomorphism of vector

bundles. Then again from the definitions we have

∆(Γ(E)) = {(x, v) ∈ X ×Cn : v ∈ imPx }.

When computing∆ of Γ(E), the map P : Γ(X ×Cn) → Γ(X ×Cn) applies the isomorphism f , everywhere
zeroes the F component of the direct sum, and then applies the isomorphism f −1. Therefore, for fixed
x ∈ X , the set imPx consists of exactly the pairs (x, v) ∈ X ×Cn which come from evaluating the image
of the composite

Γ(E) Γ(E)⊕Γ(F ) Γ(X ×Cn)

at x. These are exactly the vectors in the E summand of E ⊕F → X ×Cn , and a canonical isomorphism
realising this is immediately obtained from the isomorphism f .

That we have natural isomorphisms ∆Γ→ 1 and Γ∆→ 1 follows immediately from the fact that
we found isomorphisms in each case by only making canonical choices (subject to the caveat of the
previous footnote), and hence this completes the proof.

7.2 Phase two: Reinterpreting C∗-algebraic K -theory

We now turn to building the second half of the bridge, from the side of the C∗-algebra theory.

Definition 7.5. Let A be a unital C∗-algebra. Then the monoid V̂ (A) is defined to be the set of iso-
morphism classes of finitely generated projective modules over A (addition is just the direct sum of A-
modules).

12Actually, there is a minor subtlety here; we need to ensure that for each finitely generated projective module M over C0(X )
we choose a specific, and fixed, isomorphism φ : C0(X )n → M ⊕M ′, before defining ∆ on the morphisms using all of the same
choices. If one is being principled from the category theoretic perspective, one should really define projectivity of a module not
as a condition, but as the extra data of such an isomorphism.
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Proposition 7.6. If A is any unital C∗-algebra, then the monoids V (A) and V̂ (A) are isomorphic.

Proof. We will explicitly write down an isomorphism of monoids. Fix [p] ∈ V (A) for p a projection of
dimension n. Then C0(X )n splits as a direct sum

C0(X )n ∼= pC0(X )n ⊕ (1−p)C0(X )n .

As above, this proves that pC0(X )n is a finitely generated projective C0(X )-module. Performing this
construction with equivalent projections obviously gives rise to isomorphic modules (by Lemma 3.1),
and therefore we can safely set

Φ([p]) = [pC0(X )n].

By the definition of the sum of classes of projections this map is also additive, and because it also
preserves identities it is therefore is a monoid homomorphism. It is also obvious that Φ has trivial
kernel, and is surjective because every finitely generated projective C0(X )-module M gives rise to an
isomorphism φ : C0(X )n → M ⊕N (for some n ∈ N and other C0(X )-module N ). Indeed, composing
with the canonical map M ⊕N → M and then inclusion M → N ⊕M →C0(X )n (as we often did above)
then gives a projection p for which pC0(X )n ∼= M .

We have actually just proved that the “C∗-algebraic K0-group” of every C∗-algebra is the same as the
algebraic K0-group of its underlying unital ring. Curiously, the same is not true for the first K -group
as well (see II.6.13 of [10])—the latter is the quotient of GL+∞(A) by its commutator subgroup! The
equivalence also disperses some hope for a multiplicative structure on the C∗-algebraic K0 group, as
there is no generally sensible tensor product for modules over noncommutative rings (discrepancies
such as this one explain why topological K -theory continues to be studied in its own right).

Now let �Vect(X ) denote the quotient of Vect(X ) by taking isomorphism classes, so that (recalling
the definition of topological K -theory) K 0(X ) = G�Vect(X ) for G the Grothendieck group completion
functor.

Theorem 7.7. The functors K0C0 and K 0 are isomorphic on the compact spaces. Therefore, by the addi-
tional fact that K1

∼= K0Σ, the topological and C∗-algebraic K -theories of compact spaces are identical.

Proof. We have done the hard work already.
Let X be a compact space, and so by Gelfand duality C0(X ) is unital. By Theorem 7.4, we have

an isomorphism �Vect(X ) ∼= V̂ (C0(X )). By Proposition 7.6 we also have V (C0(X )) ∼= V̂ (C0(X )). Both of
these isomorphisms pass to isomorphisms in the Grothendieck group completion, and therefore by
Proposition 3.4 we have

K0(C0(X )) ∼=GV (C0(X )) ∼=GV̂ (C0(X )) ∼=G�Vect(X ) = K 0(X ),

as desired. Because of the equivalences involved, one easily checks that we actually have an isomor-
phism of functors.

Thus, we get isomorphic K -groups! The contravariant-ness of the Gelfand duality functor “exactly
cancels” the contravariant-ness of topological K -theory, and everything works out. Incidentally, The-
orem 7.7 provides a proof of Bott periodicity in the topological case as well (given the proof in the
more general C∗-algebraic setting, or perhaps a proof of the Connes “Thom” isomorphism!).

8 Greatest Hits™: Volume 2

The constructions and theorems of C∗-algebraic K -theory which we have detailed here are only just
the beginning. In our brief survey we have stopped just short of the general theory of extensions of
C∗-algebras, for which there is a rich array of results in the literature. Indeed, our K -theory functors
K0 and K1 appear as a special case in Kasparov’s K K -theory, along with the corresponding functors in
K -homology which we have not even attempted to mention (and there is something of a pairing be-
tween these!). In the K K -theoretic setting, Cuntz has for example proved that our K0 and K1 functors
are uniquely determined (on a suitable but large class of C∗-algebras, up to some “boundary condi-
tions”) by some of the properties which we have established; namely of being half exact, homotopy
invariant, and stable.
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There is also a general Universal Coefficient Theorem and Künneth Formula in K K -theory, which
recover all of the corresponding K -theoretic results upon specialisation. The setting of K K -theory is
a natural place for generalisations of index theorems to be proved; much work has been done gen-
eralising the Atiyah–Singer index theorem, for example. Because K K -theory theory can fail to have a
generalised six-term sequence in all circumstances, the special case of E-theory has been pioneered
by Connes and Higson. The E-theory can be thought of as a version of K K -theory for which one al-
ways has six-term exact sequences; as a consequence, more algebraic and category-theoretic methods
typically apply. The additional structure present in E-theory also gives one reason to say that they are
not just doing noncommutative topology, but actually noncommutative stable homotopy theory!

This concludes our account of some first steps into the theory of noncommutative vector bundles;
the K -theory of C∗-algebras. The reader is wished the very best for their continuation of this journey,
and it is hoped that the road ahead shall not prove too treacherous to navigate!—the paths carved by
[19], [16], and (if one is particularly confident) [2], are all excellent ones to venture down next.
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