
Rewrite heuristics and pair exploration
for automated theorem proving

Keeley Hoek (u5642917)

December 20, 2018

In this report we introduce an algorithm for proving equational lemmas by rewrit-
ing them within the ambient environment of an automated theorem prover. Our
explanation is modelled on the dependent type theory language provided by Lean
3. The idea is to focus attention on reducing interesting pairs of left- and right-hand
side expressions which we anticipate will be increasingly easy to prove are equal. We
describe the algorithm in detail, before suggesting some basic extensions.

Beginning with an edit-distance metric defined on mathematical expressions
and initially provided to the algorithm, we explain an augmentation using weights
generated from a machine-learning SVM (support vector machine) classifier, con-
tinuously updating as the search for a proof progresses. Finally, a strategy for guiding
the search towards more elegant proofs using an A*-like heuristic is introduced.

We then turn to demonstrating the function of the algorithm across several prob-
lem domains, selected in order to emphasise the impacts of the various extensions
to the core algorithm which we proposed earlier. Namely, we solve problems in cate-
gory theory, arithmetic, and a slightly more contrived theoretical example involving
hypercube complete graphs. This is all done by invoking an full implementation
of the procedures we described developed completely within Lean’s metaprogram-
ming language. We conclude by highlighting future areas for potential improve-
ment.

1 Background

We will focus our attention solely on proving equalities of mathematical expressions,
which we will often call equational lemmas. In principle, we allow arbitrary math-
ematical expressions (perhaps with some bound variables), and hence must resort
to general methods and not restrict ourselves to any particular setting. In contrast,
much work as been done on proving equations in specific areas such as for commu-
tative rings (e.g. that of [3] for Coq) or first order logic (e.g that of [1]), and where a
proof of the algorithm’s correctness is possible.

We take a different approach—trying to emulate human strategies using more
flexible machine-learning methods—inspecting the underlying expressions consti-
tuting an input equational lemma and rewriting it using known rules. This is done
in the hope that these strategies combined with brute-force computing power can
yield a proof—without relying on that possibility formally being guaranteed. We
package these strategies into a tactic for a generic interactive/automated theorem
prover, modelled on the formal language of Lean.

1

In the language of dependent type theory of Lean1, every expression can be rep-
resented as some finite number of recursive applications of constructors of an in-
ductive type expr . This means that for our purposes we can consider mathemat-
ical statements in Lean as essentially trees of repeated function applications, to be
thought of themselves as repeated applications of a “constructor” function

expr.app : expr → expr → expr .

The leaf nodes of this tree of applications are then just some other kinds of expres-
sions, perhaps modelled as applications of a function expr.const : string →
expr . We have overlooked several of Lean’s “embellishing” additional expr.* con-
structors here, most notably of the kind enabling the terms of an expression to be
bound to free variables (λ-binders). Fortunately, within a tactic Lean is able to “un-
wrap” binders and replace references to bound variables by so-called “local con-
stants” in the local state available during tactic execution (which can—and in our
case will—just be thought of as another variant of expr.const above).

Thus, the equalities we will consider will amount to Lean expressions which have
as their root vertex the application of the constructor eq : expr → expr → expr ,
accepting some left- and right-hand side expressions. As a shorthand for eq (e, f)
we will write e = f . Our goal will then be to construct a term of the type represented
by such an expression.

Notably, our constructions expr.const : string → expr have forgotten the
type information of the constant which they represent. Type-soundness is enforced
by Lean when we ask that a tree of expressions be evaluated (typically at the end of
our rewriting procedure), so will generally not play directly into our considerations.
It is at evaluation-time that our tactic’s constructions are formally verified, and this
permits us to develop tactic programs in a setting without having to meet any addi-
tional formal proof obligations.

We emphasise that the algorithm we describe below is more powerful than just
an equation simplifier. We accept arbitrary lists of “known lemmas” and rewrite ex-
pressions potentially vastly increasing in complexity before once again decreasing.
In particular, this system of known lemmas need not be confluent or satisfy a similar
property.

2 The problem and preliminary notions

In order to prove equalities by rewriting their subexpressions, we necessarily must
maintain a list of mathematical facts which may be used. For this purpose we will
maintain a list L of expr s representing known proofs of equalities of the form e = f ,
for expr s e and f , perhaps each containing some number of variables with bound
type (for example n = n +0 with n any natural number). We will call the elements
of the list L each rewrite lemmas, and throughout will fix such a list. In practice, the
known rewrite lemmas in an interactive Lean session can be programmatically enu-
merated and inspected. We are actively exploring algorithms which can dynamically
identify relevant rewrite lemmas (from an ambient library) given an equality e = f
to be proved.2

In this language our problem can now be stated precisely as follows.

1Note, though, that we restrict ourselves to discussing only those extremely general expected proper-
ties of expr s. A direct analogy with other theorem proving systems should be expected.

2This is an active area of research, and can go by the name lemma discovery/synthesis [4].

2

Problem 2.1. Let e = f be an equality of expr s to be proved, and L a list of rewrite
lemmas. Find a proof of e = f (just a term of this type) by rewriting subexpressions
of e and f until a tautology x = x is obtained.

Building on Lean’s expression manipulation facilities, we essentially define a list-
of- expr valued function rws(e,L) accepting an expr e and a list of rewrite lemmas
L, and returning a list of all possible expressions e ′ obtained from e by rewriting a
subexpression of e using a lemma in L. We call any such expression e ′ a rewrite of
e. Of course, in order to persuade the formal checker that such a replacement is
justified, we should also return with each expr e ′ a proof r that e = e ′. To clarify
the description of our algorithm below we will suppress this information, and will
essentially just explain how to determine that a proof of a given equality obtained
by a sequence of rewrites actually exists. The way in which one should backtrack
from this point, assembling the necessary proof facts which justify the performed
manipulations, is entirely dependent on the formal prover in which the algorithm is
being implemented (and in any case should be trivial and linear in the number of
rewrites needed). It will be sufficient for our purposes to consider each e ′ returned
by rws(e,L) to be “tagged” with a proof e = e ′, and we will therefore not say anything
further on this point.

Throughout we will fix a distance heuristic on expr s, i.e. a function

m : expr × expr → R≥0

with R≥0 the type of nonnegative real numbers, which estimates their rewrite dis-
tance and which we will call the metric (but will not demand that it satisfy any formal
properties). In practice the set R≥0 will actually be a finite-precision approximation
of the nonnegative real numbers. A useful working model for the metric m(e,e ′),
which we will see is (perhaps surprisingly) sufficient for many purposes, is the to-
ken edit-distance between e and e ′ (with each token having cost 1) calculated when
each is pretty-printed by Lean into strings and tokenized at spaces. The Lean pretty-
printer is intended to heuristically transform expressions into a “human-readable3”
representation, omitting more technical features such as functions’ various universe
parameters or implicit type(class) arguments.

In order that it is practical to execute the core loop of the algorithm in an inter-
active Lean session, it is necessary that we build-in some optimisations (as opposed
to providing them as extensions later). For this reason we will need to introduce the
notion of a distance estimate, modelled in Lean as some type dist_est . It will have
two constructors “n” and “≥ n” (allowing n ∈ R≥0) representing knowledge that a
distance (as measured by the metric m) between expr s is calculated to be precisely
n (called an exact estimate), or bounded below by n (called a partial estimate), re-
spectively. We also encode within partial distance estimates the information neces-
sary to, as needed, strictly improve their lower bound (until they are rendered exact).

It will be important for us to compare two distance estimates, determining an
element of the pair they form which, if both estimates were improved until they were
exact, is represents a minimal distance. Formally given two distance estimates d and
d ′, comparing them consists of strictly improving the bound represented by each in
succession until one becomes exact and the other is bounded below by the former’s

3For example, one desires that the natural number 4 be printed as the string containing the single char-
acter ‘4’, and not four recursive applications of the natural number successor function to the constructor
of the natural number zero.

3

exact value. If d = n is exact and d ′ asserts boundedness from below by at least n,
then we will write d ≤ d ′.

3 The core algorithm

In practical problems, it is extremely important to guide a search of the graph of
all possible rewrites. For instance, in contrast with the examples given in later sec-
tions, in all but the most trivial cases a breadth-first-search of the rewrite graph has
extremely poor performance. Calculating all of the possible rewrites of complex ex-
pressions can be very time-expensive, and can lead to highly inefficient methods of
graph traversal. Also of note is the fact that the search graph can be infinite even in
trivial arithmetic problems, for example whenever lemmas which introduce addi-
tional terms to an expression (e.g. n = n +0 = n +0+0 = ·· ·) are considered.

Alleviating these disadvantages is especially important in an interactive session
where responsiveness is critical. In this section we describe an algorithm for par-
tially solving this problem. In later sections we entertain various optimisations and
extensions to the procedure we present.

3.1 Description

Recall that we begin with a metric m : expr×expr → R≥0, a list L of rewrite lemmas,
and a pair of expressions e and f for which we wish to prove an equality e = f .

The key idea of our solution to this problem is to proceed iteratively, maintain-
ing a list P of currently interesting pairs each of two expr s, along with a dist_est
bounding the distance (as measured by the metric m) between the elements of each
pair. Every such pair4 p = (ep , fp ,dp) added to P will be guaranteed by construc-
tion to have had ep obtained from e by performing some number of subexpression
rewrites, and similarly fp obtained from f by performing some number of rewrites.
The purpose of maintaining such pairs is to systematically reduce the problem of
showing e = f to another problem ep = fp ; by virtue of each coming from a pair in
P , we ensure that solving the latter problem is equivalent.

We initialise P to contain only the “pair” (e, f ,≥ 0), indicating our desire to prove
e = f . At each iteration step we select a pair p = (ep , fp ,dp) of P which is guaranteed
(by exhaustively examining the elements of P) to have a minimal distance estimate
over all of P—we will call such such a p a minimal pair. We then check whether ep

has been visited; we maintain a(n initially empty) list V of the expr s which we say
have been visited once already.

We then visit the expression ep ; we first calculate R := rws(ep ,L). Then for each
element e ′p of R we append the pair (e ′p , fp ,≥ 0) to P if it has never been added to P
before (the “≥ 0” represents a lack of current knowledge of the distance between e ′p
and fp).

There are then two possibilities; either ep has already been visited or it has not.
First consider the case where it has not. Then we add the original expression ep to V
(marking it as visited), and in addition record that ep was obtained from a sequence
of rewrites of e (as opposed to f).

The other possibility is that ep has already been visited. When that occurred
we recorded whether ep had been obtained from rewriting e or f , and by virtue of
the fact that ep now appears as the first entry of the pair p, it has been obtained by

4This is a triple and not a pair of values, but nonetheless represents a pair of expressions e and f .

4

a sequence of rewrites of the expression e. We now check whether when we first
visited ep , it was also obtained by rewriting e. If this is the case then we immediately
discard it and do nothing.

Otherwise, ep has already been obtained by rewriting f as well, which necessar-
ily implies that by some sequence of rewrites of each of e and f the claimed equality
e = f can be shown to be equivalent to ep = ep . Therefore e = f can be proved in
precisely this manner; we immediately abort the procedure and backtrack, report-
ing the sequence of rewrites which were used to obtain ep in each case.

In any case, this completes the “visit” of ep .
We now visit fp , performing the completely analogous procedure to that which

we have just described for the case of ep —we essentially just interchange the labels
e and f and ep and fp everywhere. The one necessary distinction is that when we
calculate R = rws(fp ,L), we append all possible pairs (ep , f ′

p ,≥ 0) with f ′
p in R (which

have not already been added to P), to P—we replace the second entry of p, and not
the first.

Finally, erase p from the list P , and repeat this process beginning with a new pair
p ′ in P which has distance estimate dp ′ minimal in P . We give a summary of this
process below.

Algorithm 3.1 (“Pair explore”, core loop).

Let metric m, the list L of rewrite lemmas, and expr s e and f be given.

Create a list P containing the single entry (e, f ,≥ 0). Create an empty list V . Then,
repeat the following procedure forever.

(1). If the list P is empty then terminate, reporting failure (all interesting pairs have
been exhausted, without success).

(2). Otherwise, let p = (ep , fp ,dp) be the head element of P . For each successive
element p ′ = (ep ′ , fp ′ ,dp ′) of the tail of P , compare dp and dp ′ improving each
respective estimate if necessary. If dp ′ ≤ dp then replace p with p ′, continuing
until all of the elements of P have been exhausted.

The result is that p = (ep , fp ,dp) is an element of P with minimal dp .

(3). Visit ep . Visit fp .

(4). If while visiting ep or fp we discovered a way to rewrite e = f into a tautol-
ogy then terminate, reporting the sequence of rewrites we identified which
achieve this.

(5). Otherwise, erase p from P and return to (1).

The point is that the list of interesting pairs P maintains a list of our “hunches”,
where we suspect we may have success rewriting in the future. We always rewrite the
pair with minimal metric distance, in the hope that the metric is guiding us towards
pairs which are easier and easier to prove are equal. Nonetheless if a particular pair
p = (ep , fp ,dp) happens to be a “local minimum” of ep -to- fp distance, for example
in the simplest case of having no further rewrites of each of ep and fp possible, this
is overcome during execution since p is essentially just dropped and the process is
again repeated. The stack of rewrites we have performed essentially just unwinds.

In the simplest case of there existing a sequence of rewrites of e and f toward a
tautology with monotonely decreasing metric distance, and where no “false-positive”

5

pairs—with smaller distance but larger number of total rewrites required to give a
proof—can be added to P , pair-exploration immediately leads to a proof of equality
without inspecting expressions obtained from any unnecessary rewrites.

3.2 Basic extensions

The algorithm we have described above admits several simple optimisations which
are seen to have significant effects on performance in practice. By design, the value
of the function rws(x,L) for the same expression x may be required in multiple itera-
tions of the core loop—it can therefore be cached, to the benefit of situations where
computing all rewrites is very expensive (for example, when the list L is very large).
Also, as we mentioned above when describing comparing distance estimates, stor-
ing references to a table of distance estimates which can be updated from iteration
to iteration can greatly improve responsiveness in an interactive session. This is a
consequence of the fact that computing edit-distances can also be quite expensive
for long sequences of tokens, and so doing this in pieces and only where required
can avoid unnecessary computations where we very quickly establish that the edit-
distance we are calculating is “large enough to be ignored for now”.

It is also natural to consider the introduction of some tuning parameters, moti-
vated by some characteristic behaviours of the algorithm. For example, observe that
during an iteration in which we select a pair p = (ep , fp ,dp), we compute (or recall)
the entire lists rws(ep ,L) and rws(fp ,L) and then potentially add a new pair to P for
each element of both of these lists (depending on whether each new pair has already
been seen at some point). It can be the case that for many pairs p the expressions
ep and fp have associated sets of rewrites which are very large—a simple example
is the case of a long but trivial arithmetic expression, where multiplication by 1 and
addition by 0, and associativity and commutativity can be applied in many places.
It is convenient to package the information of the pairs obtained from the rewrites
of both rws(ep ,L) and rws(fp ,L) into a single list5 Lp associated to p.

In the operation of the algorithm as described the contents of Lp are immedi-
ately appended to the list P , deleting pairs which have already been added to P at
some point. Then p is deleted from P . It can be desirable to instead introduce a
parameter Np called the pop-size and equal to some positive natural number or ∞.
Then when a minimal pair p is selected from P and Lp is calculated, we instead ap-
pend only the first Np elements of Lp to P and remove them from Lp (or fewer if
Lp contains fewer than Np elements). Then, instead of deleting p from P we re-add
it, being careful to record of the remaining elements of Lp . If P is then ever again
a minimal pair, we examine the next Np elements of Lp and so on until every ele-
ment of Lp has been exhausted, at which point p will actually be erased from P . The
advantage of doing this is that often not all of the possible rewrites available need
be considered in order to make progress, and the disadvantage is that very small Np

values can “blind” the search algorithm to potentially very important rewrites for
some time (we consider the order of a list rws(x,L) essentially random).

5There is also a subtle question which arises here as to how this pair of lists should be combined—
by concatenation, by 1-1 splicing, or something else—which can lead to differing search characteristics
where rewrites for one expression is pursued first before the other, or rewrites for both are pursued in
alternating fashion, etc. For the purposes of later sections, in implementing the algorithm ourselves we
performed 1-1 splicing.

6

4 Integrating machine-learning

While executing an instance of pair-exploration typically many subexpression rewrites
are calculated, but the expression that each rewrite yields is often never considered
in the form of being given a “visit”. We have described using the pop-size param-
eter Np to manage the effect this has on the number of new pairs added to P each
iteration, but we did not actually change the number of calculated rewrites. In this
section we explore how this additional information regarding known, “reachable”
expr s, can be leveraged to improve the token edit-distance metric on expressions.

4.1 Weighted edit-distance metrics

When a human attempts to prove an equational lemma, for instance a trigonometric
identity such as

sin4 x −cos4 x = 1−2cos2 x,

they employ a number of strategies. In this example, suppose we start with the left-
hand side sin4 x −cos4 x. One such human-like strategy could proceed as follows:

1. Observe that if we are ever to perform manipulations of the left-hand side in
order to eventually obtain the right-hand side, we will need to eliminate the
sin4 x term since it does not appear in the right-hand side at all.

2. Search our “working knowledge of mathematics”, consisting of our known rewrite
lemmas, for ones which can rewrite sin4 x into an expression not containing
“sin x”.

3. Note that sin4 x = (sin2 x)2 and that the rewrite lemma sin2 x = 1−cos2 x suc-
cessfully rewrites it, removing the instance of sin x.

4. Rewrite the left-hand side, obtaining a proof that sin4 x−cos4 x = (1−cos2 x)2−
cos4 x.

5. Simplify6 the result, obtaining sin4 x −cos4 x = 1−2cos2 x.

6. Realise that this is precisely the equality to be proved. (If we were not yet fin-
ished, then repeat.)

Of course, this strategy is far from flawless; it obviously does not succeed in general,
and for example offers no help when both the left-hand and right-hand sides of a
given equality are simple rearrangements of the same tokens. Nonetheless, recog-
nising which tokens are important to eliminate during a manipulation of an equality
can provide important information to a proof search, making it much more efficient
than a brute-force approach.

6We intentionally leave the notion of simplification of an expression imprecise here. For our purposes,
simplification should roughly correspond to the “mindless” expression manipulations humans might
perform before reanalysing the result of their calculation—expanding squared parenthesised subterms
and then cancelling terms in the result, for example. One model of this procedure, which is essentially
provided by Lean, is to keep track of an ambient list S of directed rewrite lemmas (rewrite lemmas which
should only applied when a particular side of the equality they represent is matched), and when asked to
simplify an expression just mindlessly apply these lemmas until it is not possible any further. In our case
the set S could contain (a +b)2 = a2 +2ab +b2 (among many other lemmas), for example.

7

One way attempt to exploit these observations is to generalise the idea of the
tokenized edit-distance metric on expr s to weight the insertion/deletion/substitu-
tion of tokens depending on how important we suspect their manipulation will be
to the proof.

Thus let T be the set of all tokens which can be obtained from tokenizing expr s
and let ` = (`i) be a finite sequence in T . Suppose that a weight function w : T →
R≥0 is given. We allow the elements (`i) to be manipulated by some sequence of
operations each with an associated R≥0-valued cost, with each operation being

• a deletion of a token t = `i from ` for a cost of w(t), or

• an insertion of a token t into ` for a cost of w(t), or

• the substitution of a token t = `i in`with a token t ′ for a cost of max{w(t), w(t ′)}.

The cost of a sequence of operations is just the sum of each operation in the se-
quence.

The w-weighted edit-distance between two finite sequences of tokens ` and `′
is then the minimum of the costs of all sequences of operations taking ` to `′ (the
Wagner–Fischer algorithm [6] implementing this calculation is easily adapted cache
partial progress in a dist_est structure). By converting expr s into strings of to-
kens, for example by pretty-printing them and tokenizing at spaces, such a weight
function w defines a metric mw : expr × expr → R≥0 (and the case of the w(t) = 1
weighting recovers our original edit-distance metric).

4.2 Token classification

By computing appropriate weight functions, we can steer a pair-exploration search
towards the most important rewriting steps. Ideally, we obtain the benefits of the
human-like strategy seen in the example above without the disadvantages of di-
rectly applying this strategy and potentially getting stuck after making a wrong-turn
rewrite.

However, computing a useful weight function is an entire sub-problem in and
of itself. We propose a strategy based on the number of occurrences of tokens in
expressions obtained from rewriting the original expressions e and f . Let ωx (t) be
the number of times which the token t has been encountered in tokenizing the expr
x (accounting for a multiplicity of occurrences in the same expression).

Note that it is enough during execution of our algorithm to partially define the
metric mw on only pairs of those expressions which we have already obtained by
rewriting. Thus, we only require a definition of w : T → R≥0 replacing T with the
set of tokens which have been obtained by pretty-printing expr s that we have seen
so-far (and we redefine T thusly).

Label the elements of the (necessarily finite) set T by t1, t2, . . . , tn . For each ex-
pression x we can thus form the vector ωx = (ωx (t1), . . . ,ωx (tn)). We can then form
the set Ce of all thoseωx s for which x is an expression which has been obtained dur-
ing a pair-exploration iteration from rewriting f . Define C f for f similarly. Then
execute a linear SVM (support vector machine) algorithm7 in order to calculate a
hyperplane

a ·v−b = 0

7Such as that provided by libSVM [2], which we used and integrated into Lean via native foreign library
bindings.

8

in Rn classifying the sets Ce and C f , with a = (a1, . . . , an) ∈ Rn , b ∈ R, and v ∈ Rn

free. The point is that this hyperplane divides into Rn two regions, classifying (by its
vectorωx) whether an expression x is more likely to have been obtained by rewriting
e, or f .

The component ai of a gives the slope of this classifying plane in the i th co-
ordinate, and therefore quantifies the extent to which possessing the token ti ∈ T
determines whether an expression x obtained during pair-exploration was likely to
have been obtained from rewriting the original expression e, or f . Tokens ti with
a large component |ai | are thus precisely those which we desire to rewrite-away or
rewrite-and-add in order to transform e into f (or more likely reconcile these two
expressions as equal to a common third expression).

A token ti appearing equally frequently in expressions obtained from e and f will
necessarily have ai = 0. However, for the purposes of obtaining a proof of an equal-
ity, a misplaced token ti is still undesirable. Therefore, it is undesirable to permit the
token weights given by w to actually be equal to zero—we would like them to retain
some positive edit-distance cost. We therefore suggest the SVM weight function

w(ti) = 1+ log(1+|ai |).

We will call the induced metric mw the SVM-weighted (edit-distance) metric.
Another possible weight function w can be obtained by computing the sumsΩe

and Ω f of the sets of vectors ωx obtained from rewriting e and f respectively. The
i th component of the difference

abs(Ωe −Ω f) = (|(Ωe)1 − (Ω f)n |, . . . , |(Ωe)n − (Ω f)n |) =: (c1, . . . ,cn)

then gives a different measure of how much the token ti accounts for expressions
obtained from e, or f . We analogously suggest the weight function

w(ti) = 1+ log(1+|ci |)
in this case, giving a metric mw which we will call the (unnormalised) centre-of-
mass-weighted (edit-distance) metric.

Finally we note that it is not necessary, and can be quite expensive in some situ-
ations, to recompute the weight functions w after each iteration of pair-exploration
in each case. Note that while recalculating the values of a weight function is typically
not very expensive, there is the much more significant associated cost of having to
reset the in-progress metric calculations stored in all of the dist_est s because all
of the distance estimates they give may no longer be correct for the new metric. As a
consequence, it is desirable to perform a weight recalculation after some fixed num-
ber Nr of pair-exploration iterations, as opposed to every iteration. In the meantime
if we see a token we have not seen before, we simply assign it some default weight
which we will take to be unity.

In fact, this strategy “deferred refreshing” can have additional function benefits
over a setting of Nr = 1. For example, consider a setting of Np <∞ and Nr = 1. It can
happen that in a single iteration step, some number of rewrites are all found rewrit-
ing an expression obtained from e and giving rise to a token t which has not been
seen before, but which would have also been seen from rewriting f if the pop-size
parameter Np was not finite. Alternatively, it could happen instead that no direct
rewrites of f give rise to expressions containing t , but many second-order rewrites of
the resulting expressions do. In any case the pair-exploration algorithm with Nr = 1
may erroneously pursue rewrites which insert or remove the token t without this
behaviour being of material importance to the proof.

9

5 Further extensions

Before turning to the demonstration examples, we briefly explain some further ex-
tensions to the variants of an edit-distance metric which we have just described.
First note that all of the major pieces we have described—the pair exploration algo-
rithm, the general notion of a metric, the idea of edit-distance weight functions—all
fit together as modular objects which can be plugged-into one another and swapped
as needed. Our underlying implementation of all of these pieces has been structured
with the aid of Lean’s powerful metaprogramming language in much the same way.
Extensible modules wrapping, iterating, or replacing the components we have just
described are all easily developed and invoked from an interactive session.

One natural wrapper for the metrics we have described essentially implements
an A*-like heuristic. The heuristic measures distances on the search graph which is
constructed as rewrites are computed, and can be defined as follows. Observe that
each time we computed an element e ′′ of rws(e ′,L) for some expression e ′, we es-
sentially determined an edge e ′ → e ′′. This graph structure has been effectively sup-
pressed thus far, but it now comes to the fore. Fix a metric m : expr × expr → R≥0

and let p = (ep , fp ,dp) be a “pair” obtained during pair-exploration. Then using
this graph structure we can compute shortest distances dist(e,ep) and dist(f , fp) us-
ing the currently known graph having rewritten expressions as vertices and edges
e ′ → e ′′ whenever there is a rewrite lemma taking e ′ to e ′′ in one step. It is then
interesting to define the A*-metric associated to m

mA*
α (ep , fp) =αdist(e,ep)+m(ep , fp)+αdist(fp , f)

for some constant α ∈ R≥0.
This metric is interesting because the quantities dist(e,ep) and dist(fp , f) are the

known shortest8 number of rewrites required to obtain ep from e and fp from f ,
respectively. They therefore represent an estimate of the complexity of a proof of
e = f if a proof is found via showing ep = fp . Increasing the parameter α increases
the bias away from potential proofs which appear to be high in complexity—the
pair-exploration algorithm attempts to better emulate a shortest-path search. This
has obvious positive consequences in the context of attempting to find the most
concise, elegant, and human-readable proofs of equational lemmas.

6 Demonstration and sample problem domains

We have no intention of giving a guided tutorial on the Lean theorem prover’s lan-
guage, nor of giving exhaustive documentation describing the operation of the Lean
meta-programs which we have developed to implement the algorithms that have
just been described.

Nonetheless, we devote this section to giving some real examples of interactively
proving theorems in Lean using pair-exploration and related methods—which to-
gether form a Lean tactic we will call “ rewrite_search 9”. We do this both to give
some indication of the practical problems which can be solved via the methods

8Though, it need not be the case that during our search a calculated dist(e,ep) value is actually min-
imal over all possible ways of rewriting e and the resulting expressions. We merely examine our current
knowledge in order to calculate dist(e,ep).

9The source code for this bundle of utilities can be found at https://github.com/semorrison/
lean-tidy, along with continually improving associated documentation.

10

https://github.com/semorrison/lean-tidy
https://github.com/semorrison/lean-tidy

which have described, and also to illustrate the convenient way in which the meta-
programs we have developed can be invoked in a Lean session.

6.1 Interacting with Lean

We begin by very briefly introducing the interactive Lean session in which we will
be working, by solving a trivial example problem using rewrite_search . We first
enter the following three-line code snippet.

The first line (1) declares the existence of three functions f , g and h, each sending
natural numbers to natural numbers. Line (2) then asserts (under the name ax1)
that it is known that f (n) = g (n) for every n ∈ N. Line (3) asserts the analogous fact
ax2 for the pointwise equality of g and h. We now introduce a theorem to be proved:

Line (4) declares that we intend to prove a theorem thm1 which claims that f (1) =
h(1). On line (5) we invoke our general machinery, instructing Lean to perform pair-
exploration using the rewrite lemma list L = [ax1 , ax2].

This code sample compiles and executes without error, and this indicates that
rewrite_search successfully obtains a proof. Upon request, the interactive ed-
itor panel reports the rewrite steps which were performed (written in valid Lean
language itself), and this is accompanied by the following interactive force-directed
graph (of which we provide only an image capture) depicting the entire rewrite graph
which was explored.

The two larger vertices represent the original left- and right-hand expressions, and
the colour of intermediary vertices (in this case of which there is one) represents
which of the two larger vertices they were first obtained from by rewriting. Of course,
in this case the actual proof obtained is entirely trivial, requiring (as shown) a single
rewrite of the left-hand side f (1) by ax1 , and then again by ax2 . We now turn to
some real examples.

Throughout all of the following examples, a set L of rewrite lemmas from the
ambient interactive Lean session have been implicitly tagged. However, we stress
that these collections of lemmas were not crafted specifically for the purpose of
being sufficient to solve the examples we provide, but instead are defined globally
throughout the projects they have been extracted from and have been assembled for
the sole purpose of developing the Lean library to which they belong efficiently and
concisely.

11

6.2 Category theory

Invocations of rewrite_search have been found to be particularly convenient when
developing a from-first-principles category theory library10 in Lean. In this context,
one often wants to make a construction via specifying the necessary data, where
formally a list of conditions which this data must satisfy should also be verified. For
example, when defining a functor between categories it might be desirable to spec-
ify only what the functor should do on morphisms, leaving well-definedness on the
objects and actual functoriality as “self-evident”—as would certainly be done when
communicating to other human mathematicians. Of course when higher-level con-
structions such as even just monoidal categories or symmetric monoidal functors
are to be specified, the list of necessary conditions to be formally checked can grow
very rapidly.

Lean’s metaprogramming features allow in many situations these extraneous ad-
ditional proof obligations to be omitted in their entirety, with a request to generate
them silently being made a (user-specified) tactic such as rewrite_search . In this
setting, rewrite_search has proved very convenient in practise.

A typical example is that of proving that the composition of two equivalences of
categories is an equivalence—an equivalence C ∼= D being the data of a functor F :
C →D, a functor G : D →C , and natural isomorphismsα : FG → id and β : GF → id.
The Lean code required to define such a composition and generate a formal proof
that all of the necessary conditions are satisfied (that each natural transformation
α and β is an isomorphism and actually natural, for example), is specified fully11 in
the following code snippet.

Note here that no explicit call to rewrite_search has been made, since the generic
mechanism for determining omitted proofs has been invoked.

This is obviously much more concise than explicitly specifying the eight separate
proofs of sub-facts which were necessary in order for the Lean-kernel to accept this
definition—in fact, with “trace-mode” activated and the default parameter values
Np =∞ and Nr = 10, the following data is reported:

10This library is available on-line at https://github.com/semorrison/lean-category-theory.
11Admittedly, we have used a shorthand notation defined in the ambient category theory library to

specify the compositions which give the components of the needed natural isomorphisms.

12

https://github.com/semorrison/lean-category-theory

Proof number expr s seen expr s visited Rewrites used

1 22 10 7
2 91 29 16
3 46 18 10
4 14 6 4
5 22 10 7
6 91 29 16
7 46 18 10
8 14 6 4

The “rewrites used” column gives the number of rewrites which were actually used
in the final proof. Thus explicitly specifying each of these rewrite lemmas and their
order of use would have very significantly—and essentially pointlessly—obfuscated
an otherwise routine mathematical definition (especially considering the fact that
proofs 1-to-4 and 5-to-8 were completely analogous symmetrical versions of each
other).

The different performance impacts of centre-of-mass, SVM, and the unweighted
edit-distance metrics are very marginal in this example, and the following one. Dis-
tinguishing between the centre-of-mass and SVM weightings on either side of a
slash “/”, we have the following similar results to those given above:

Proof number expr s seen expr s visited Rewrites used

1 21/22 9/10 7/7
2 86/93 28/30 17/17
3 41/43 16/16 10/10
4 14/14 6/6 4/4
5 21/22 9/10 7/7
6 86/93 28/30 17/17
7 41/43 16/16 10/10
8 14/14 6/6 4/4

This can happen for example when a complex composition of morphisms is to
be shown equal to the identity, wherein very little can be gleaned by comparing
other derived complicated compositions of morphisms with the single identity mor-
phism. The distinction between the weighting strategies is much more prominent
in other areas of the category theory library, and (as we shall see) in other problem
domains.

We conclude by examining a proof in Lean that a functor F : C → D which is
part of an equivalence is necessarily full. This result is encoded in the following
code snippet (which is excerpted from a file which includes some other facts about

13

equivalences).

Notably, on line (40) we have inserted a call to apply, . . . in order to hint that faith-
fulness of one of the functors involved in the equivalence will be critical in the proof
(greatly reducing the duration of the search). On the following line we proceed an
invocation of rewrite_search by a meta-tactic tidy , which by unfolding defini-
tions just simplifies our goal into a single equality to be solved. We have config-
ured rewrite_search in this case to use an SVM classifier metric with Np = 3 and
Nr = 10.

Below we give a visualisation of the search graph built throughout execution
of the pair-exploration algorithm, where it is easily seen that the route taken by
rewrite_search is very efficient (the actual rewrites which were used are given in
red—and efficient at least in the sense that very few “dead-end” rewrites have been
considered).

It is very important to stress in this instance that the true rewrite graph is infinite,
and the true degree of many vertices is approximately 10 (a reduced pop-size pa-
rameter limited this number during the actual search). Below we give a continua-
tion of the previous graph, including additional grey vertices which were not even

14

found during the search (but nonetheless were identified by chance after forcing a
more complete examination of the rewrite graph for a few minutes) being included.

6.3 Arithmetic

Our pair-exploration algorithm for solving general equational lemmas is automat-
ically suited (or at least applicable) to simplifying equations in arithmetic. For ex-
ample, the rewrite_search tactic complements “equation normalisation” tactics
present in Lean’s standard library, which are able to solve certain classes of prob-
lems quickly but cannot handle arbitrary division, for example— rewrite_search
is necessarily much more robust by design. If rewrite_search were able to prove
an equational lemma in roughly the same time as it would take to determine that
the lemma belongs to a class which can solved by a more efficient algorithm, then
the utility of rewrite_search as a general purpose interactive Lean tactic would
obviously be further improved.

Consider the example of proving the (completely arbitrary) equational lemma

(a × (b + c +1)/e)×d = a × (b/e ×d)+a × (1/e ×d)+a × (c/e ×d)

for a,b,c,d ,e all rational numbers (and e nonzero). In Lean we would specify this
lemma via:

The setting of arithmetic provides an excellent example of the utility of centre-of-
mass and SVM weighted edit-distance metrics over the standard unweighted metric.

Fix the parameters Np = 10 and Nr = 10 (we increase Np compared to the previ-
ous section to eliminated the “blinder” effect at low setting has on performance in

15

typical arithmetic problems). Then an unweighted search sees a total of 556 expr s
and visits 89, in order to obtain a proof using 19 rewrites. On the other hand a
centre-of-mass weighted search sees 180 expr s, visits 25, and finds a proof using
17 rewrites, while an SVM weighted search has the very similar performance of 187
expr s seen, 25 visited, and a proof of length 18. There is a corresponding factor-of-
ten reduction in execution time as a consequence. This makes use of an unweighted
pair-exploration search for this purpose quite impractical, while the weighted vari-
ants enjoy convenient interactive behaviour.

6.4 Hypercube complete graphs

Finally, we will examine a much more contrived problem domain compared to those
we have just seen, but which will allow us to demonstrate the advantages of an A*-
like metric in a simple (and extreme) case. In this example we will not provide the
Lean code required to explicitly construct12 the interactive context in which we will
invoke rewrite_search —we will be content to just describe it.

We define three functions f , g , and h, all maps N×N×N → N. We then introduce
axioms of the form

∀a,b,c ∈ N : f (a,b,c) = f (α,b,c)

∀a,b,c ∈ N : f (a,b,c) = f (a,β,c)

∀a,b,c ∈ N : f (a,b,c) = f (a,b,γ)

for all possible α,β,γ ∈ X = {1,2,3}. We proceed reproducing the resulting set of
axioms twice more; replacing f everywhere with g , and then again with h.

The result is that these axioms specify three disjoint complete graphs each on
|X |3 = 27 vertices, with one graph corresponding to each of f , g , and h (the first of
which has vertices f (a,b,c) for (a,b,c) ∈ X 3, and analogously for g and h). We then
additionally impose the axioms

f (2,2,2) = g (3,3,3) and g (1,1,1) = h(2,2,2).

This creates a path from any vertex in any of the complete graphs to any vertex of
any other—i.e. combined with the previous axioms asserts that the functions f , g ,
and h agree on X 3. Our goal will be to prove that f (1,1,1) = h(1,1,1).

This is an interesting toy environment to consider when testing an A*-like met-
ric, since it is possible to perform several rewrites pointlessly meandering within a
single complete graph, before finally moving to a vertex in that graph for which one
of the two special axioms above permit rewriting into a different complete graph.
The purpose of our A*-metric is of course to try to minimise this behaviour and ap-
proximate optimality.

In order to maximise the chance of a “meandering” route being found due to
poor knowledge of the total search graph, we set Np = 1 and choose a default value
of Nr = 10. A direct invocation of rewrite_search using the unweighted edit-
distance metric yields the performance 80 expr s seen, 72 expr s visited, 17 rewrites
used.

Takingα= 5 (an arbitrary, large quantity compared to the standard edit-distance
cost of 1) in the definition of the A*-like unweighted edit-distance metric mA*

α , we

12It being too unwieldy and also computer generated. The Mathematica™ 11.0 notebook used to
generate the example can be found at https://github.com/semorrison/lean-tidy/blob/master/
test/rewrite_search_cube_axioms.nb.

16

https://github.com/semorrison/lean-tidy/blob/master/test/rewrite_search_cube_axioms.nb
https://github.com/semorrison/lean-tidy/blob/master/test/rewrite_search_cube_axioms.nb

instead see the much improved result 80 expr s seen, 76 expr s visited, and only
11 rewrites used in the final proof (this is optimal). Visualising these results, we
improved the extremely-meandering path

into the optimal path

.

Because of the relatively high performance impact associated with introducing
additional expr vertices to the search graph (and hence the desire to introduce
the pop-size parameter Np), it appears promising to set Np = 1 and counteract the
“graph blindness” which is incurred by only revealing a single edge at time by using
an A*-like approach such as that which we just gave. The A*-approach also exhibits

17

better performance in terms of fewer total expr s seen for smaller values of α, say
α = 1, at the cost of not producing a precisely-optimal length 11 path (we we find
a length 14 path in this case). Performance is seen to improve additionally when a
classifier-weighting such as centre-of-mass or SVM is introduced.

Finally, note that the long and meandering 17-rewrite path initially obtained
could be reduced to a closer-to-optimal length 14 path by running a shortest-path
algorithm on the known rewrite graph when any path whatever connecting the left-
and right-hand sides is found—as opposed to simple naive backtracking (the for-
mer of which we have implemented in our Lean module and recommend). While
overlapping with the advantages of the A*-like metric, we expect that A*-like metrics
should also decrease path-lengths in situations where the total rewrite graph is too
large and sparse to possibly be fully known—a situation where finding a shortest-
path using the resulting rewrite graph at the end of a search would likely be of little
benefit.

7 Future work

There are many possible directions for future extensions of this work—given its mod-
ular nature, each piece can essentially be individually examined and improved on its
own. We conclude by giving some recommended directions of further enhancement
primarily based on observations made when the algorithm was used in practice.

The fact that our edit-distance calculations are performed on space-tokenized
pretty-printed strings is quite a crude procedure, though nonetheless possesses sig-
nificant power in practical applications (perhaps surprisingly so). Since expressions
in Lean are essentially repeated function applications, they possess a natural tree
structure which could potentially be exploited for additional information. One pos-
sibility is to replace the string-tokenized edit-distance metric with a labelled-tree
edit-distance metric, such as that of [5].

In practice, it desirable that a search is able to be left to run for some period of
time, especially in the case where it is not even known if a rewrite-path between
the two input expressions exists. It is therefore desirable that searches lasting a very
large number of pair-exploration iterations remain efficient over time. One factor
which has been observed to interfere with this efficiency is a build-up of “stale” in-
teresting pairs which were found earlier in the search, but where additional progress
on the problem had been made since and the pairs would never be revisited. Nonethe-
less, these pairs remain in the global interesting pair list P and can consume calcu-
lation time as each new pair selected from P is compared with each of P ’s its ele-
ments. This problem is particular pertinent in situations where a classifier such as
SVM refreshes the weights associated to each token, and therefore all distance esti-
mates as well. Each of the distance estimates for the potentially many “stale” pairs
must be recalculated in this case, which can be very expensive, in practice even com-
pletely pausing the search for a moment. We thus propose that in the interest of per-
formance a strategy for pruning “stale” interesting pairs from the list P—migrating
them to some kind of “back-up” list, or just dropping them altogether—be investi-
gated.

An implementation detail of the rewrite_search tactic is that if a maximum
number of pair-exploration iterations are exceeded, then the tactic aborts returning
an error message. This is necessary to prevent situations where an impossible prob-
lem is posed to rewrite_search and leads to an infinite-loop. However, it is often

18

the case that a rewrite-problem is impossible not because the equality it represents
is actually false, but because rewrite_search has not been explicitly made aware
of a needed rewrite lemma (or this lemma has not yet been proved). It would instead
be more desirable if once a maximum number of iterations were reached, the “goal
state”—representing what remains of the theorem to be proved—is replaced with
a human-readable simplified version of the equality (i.e. measured by the metric
to have smallest distance between its two sides) which was original given as input.
This would allow missing lemmas to be more easily identified, and also aid in in-
teractively proving theorems where the complete proof strategy is not already fully
known.

Finally, we suggest a direct extension to the pair-exploration algorithm itself which
is inspired by human behaviour. Often humans are not only able to recognise that
particular terms of one side of an equality should be eliminated (as we attempted
to motivate using weighted edit-distances), but they go an additional step to con-
clude that it suffices to show some number of other equalities of subterms, or of in-
termediary expressions. These “conjectured sub-equalities” are often obtained just
by pattern matching, and are frequently those terms most significantly contribut-
ing to the edit-distance cost of changing the tokens of one side of the equality to
to the other. A general strategy for determining such sub-equalities would be very
valuable, both from the perspective of guiding the algorithm and improving perfor-
mance, and also proving more helpful feedback to an interactive user of the tac-
tic. Tactic users could be informed of the sub-equalities which were determined but
could not be discharged automatically, and also the ambient interactive environ-
ment could be automatically searched for rewrite lemmas which were not explicitly
provided but closely match the conjectured equalities.

References

[1] Leo Bachmair and Harald Ganzinger. “Rewrite-based equational theorem prov-
ing with selection and simplification”. Journal of Logic and Computation 4.3
(1994), pp. 217–247. DOI: 10.1093/logcom/4.3.217.

[2] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for support vector
machines”. ACM transactions on intelligent systems and technology (TIST) 2.3
(2011), p. 27. DOI: 10.1145/1961189.1961199.

[3] Benjamin Grégoire and Assia Mahboubi. “Proving equalities in a commutative
ring done right in Coq”. International Conference on Theorem Proving in Higher
Order Logics. Springer. 2005, pp. 98–113. DOI: 10.1007/11541868_7.

[4] Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and Ewen Maclean.
“Proof-pattern recognition and lemma discovery in ACL2”. International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning. Springer.
2013, pp. 389–406. DOI: 10.1007/978-3-642-45221-5_27.

[5] Mateusz Pawlik and Nikolaus Augsten. “RTED: a robust algorithm for the tree
edit distance”. Proceedings of the VLDB Endowment 5.4 (2011), pp. 334–345.
DOI: 10.14778/2095686.2095692.

[6] Robert A Wagner and Michael J Fischer. “The string-to-string correction prob-
lem”. Journal of the ACM (JACM) 21.1 (1974), pp. 168–173. DOI: 10.1145/321796.
321811.

19

https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/978-3-642-45221-5_27
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811

	Background
	The problem and preliminary notions
	The core algorithm
	Description
	Basic extensions

	Integrating machine-learning
	Weighted edit-distance metrics
	Token classification

	Further extensions
	Demonstration and sample problem domains
	Interacting with Lean
	Category theory
	Arithmetic
	Hypercube complete graphs

	Future work

