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Abstract

We prove the folklore result that the Drinfeld centerZ(C)of a pivotal categoryC is contravariantly
equivalent (as a braided monoidal category) to the category of representations of the annular
category of C, when C is finitely semisimple. This has only been briefly sketched in the literature
previously.

Given bimodule categories MD C and NC D under mild hypotheses there are two general
constructions we can make; first, we can form their Deligne product M �

C�Dmop
N , which is a

purely algebraic object. We can also consider representations of a “bimodule annular category”,
consisting of diagrams drawn in the annulus with equatorial boundaries labelled by MD C
and NC D . We prove that the Deligne product and representations of the bimodule annular
category are contravariantly equivalent in the finitely semisimple case. As corollaries we deduce
characterisations of the bimodule Drinfeld center Z( MC C) and module functor categories
[ NC D → KC D], each as representations of a special case of the bimodule annular category.
To prove these equivalences we introduce a notion of “balanced tensor products” of module
categories, which we show in particular gives a new model for the Deligne product M �

C
N in

the finitely semisimple case.
Finally, we use the balanced tensor product to define the notion of a bibalanced center

Zbibal( MC D) of an arbitrary bimodule category MC D , for which we establish a monoidal
structure generalising the monoidal product in Z(C).
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Chapter 0

Overview

Bimodule categories are of great interest to both mathematicians studying tensor categories and
physicists studying topological quantum computation. To a mathematician, one way to study
a finite tensor category C is by calculating the equivalence classes of its invertible bimodules;
this is the so called Brauer-Picard group BrPic(C) of C. This group controls the group-graded
extensions of C [11], and is equivalent to the category of braided automorphisms of the Drinfeld
center Z(C) of C [10]. For a fixed bimodule category M, calculating the bimodule functors to
another bimodule category N is another way to determine the structure of M.

On the other hand, diagrammatic categories called annular categories play a key role in
describing low energy excitations in some models of topological phases of matter [4]. In
particular, point defects in the bulk of a topological phase are parameterised by representations
of the annular category

∫
S1 C for a pivotal category C. Intersections of domain walls between

topological phases are in turn parameterised by representations of the annular category for a
collection of compatible bimodule categories. The promise of topological phases in quantum
information theory is that they provide a way to perform quantum computation in a way which
is robust to local noise [42, 14]. In these proposed devices, the quantum information is stored
in excited states of the system. We would need to understand the explicit structure of these
annular categories in order to determine the Hilbert spaces of excitations at domain walls and
defects.

It is often extremely difficult to calculate directly with the algebraic objects we have just
described [23, 32, 17, 2]. In this thesis we prove equivalence theorems which provide a connection
between the mathematical and physical perspectives. As a key step along the way we define
the balanced tensor product M

bal
⊗
C
N of a pair of module categories, and use it to define maps to

both the algebraic and diagrammatic worlds. Assuming that all of our categories are finitely
semisimple, we prove that all of these maps are equivalences.

The contents of this thesis are arranged as follows. In Chapter 1 we introduce basic definitions
in the theory of k-linear monoidal categories and their module categories. The key definition
is the Drinfeld center Z( MC C) of a (C , C)-bimodule category, and the celebrated special case
Z(C) for a monoidal category. In Chapter 2 we establish a folklore result—that there is an
equivalence between the Drinfeld center Z(C) and representations of the annular category∫

S1 C—in much more detail than has ever been done previously. In Chapter 3 we define a
generalised family of annular categories for bimodule categories, and connect them to our
balanced tensor product M

bal
⊗
C
N and its sister construction, the category BiBal(D ,C)(M ,N) of

bibalanced objects. In Chapter 4 we define the balanced center Zbibal( MC D) of a (C ,D)-bimodule
category M, and we relate its monoidal product to our earlier diagrammatic constructions.

The main equivalence theorems which we prove are summarised in the diagram below. The
solid arrows depict functors which always exist when the categories they pass between make
sense. Dotted morphisms indicate functors which only exist given semisimplicity hypotheses.
When adjacent functors both exist and pass in opposite directions then they are part of a (possibly
contravariant) equivalence. Equalities with a boxed label indicate the hypothesis required for
them to exist. The first row is established in Chapters 1 and 2. The second and third rows are
developed in Chapters 3 and 4.
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2
O

verview

“Physics”
Rep (diagram category)

Algebraic “Centers” Functor Categories

Rep
( ∫

S1 C
)

Z(C)

Z( MC C) [ CC C → MC C]

Rep

(
C

MC NC )
M

bal
⊗
C
N [ M∗

C → NC ]

Rep

( C

D

MD C NC D

)
BiBal(D ,C)(M ,N) [ M∗

C D → NC D]

Zbibal( MD C)

M � C

D � Vec

N � M∗

(Requires C ,D pivotal.)



Chapter 1

Preliminaries

Let C and D be categories. We denote the set of morphisms from an object X of C to the
object Y by C(X → Y), and the category of functors from C to D by [C → D]. The identity
on X is denoted idX . The relations � and ' denote isomorphism and equivalence respectively.
Throughout k will be an algebraically closed field of characteristic 0. Let I � [0, 1] denote the
unit interval.

1.1 Basic k-linear category theory

Throughout we mostly adhere to the notation of [12]. A comprehensive resource is [15].

Definition 1.1.1. A category C is k-linear if all of the following hold:

• For all X,Y ∈ C the homset C(X → Y) is a k-vector space (and not merely a set).

• The composition law ◦ : C(Y → Z) × C(X → Y) → C(X → Z) is a bilinear map.

• There is a zero object 0 ∈ C with dimC(X → 0) � dimC(0 → X) � 0 for all X ∈ C.

• The category C has direct sums: for all X1 ,X2 ∈ C there exists an object Y ∈ C together with
morphisms p1 : Y → X1, p2 : Y → X2, i1 : X1 → Y, i2 : X2 → Y such that p1 ◦ i1 � idX1 ,
p2 ◦ i2 � idX2 , and i1 ◦ p1 + i2 ◦ p2 � idY . If such a Y exists it is unique up to unique
isomorphism, and it is denoted X1 ⊕ X2.

Thus there is a canonical zero morphism 0 ∈ C(X → Y). A functor C → D between k-linear
categories C and D is linear if F : C(X → Y) → D(F(X) → F(Y)) is a linear map for all X,Y ∈ C.

In this thesis unless otherwise specified all categories will be k-linear and we will consider
only the linear functors between them. Since linear functors preserve the equations defining a
direct sum, all of our functors will preserve direct sums.

Definition 1.1.2. The direct sum completion of a category C is a new category Mat(C) with objects
formal direct sums X1 ⊕ · · · ⊕Xn of objects Xi of C. The morphisms X1 ⊕ · · · ⊕Xn → Y1 ⊕ · · · ⊕Ym

are n × m matrices with a morphism Xi → Yj in their (i , j)-th entry. The composition law is
matrix multiplication.

Definition 1.1.3. Given categories C and D we can form the category C ⊗pure D with objects
formal products X ⊗ Y (just pairs (X,Y) ∈ C ×D) and homsets (C ⊗pure D)(X ⊗ Y → Z ⊗ W) :�
C(X → Z) ⊗ D(Y → W).

The naïve tensor product of the categories C and D is the direct sum completion C ⊗ D :�
Mat(C ⊗pure D). For functors F : C → E and G : D → F there is a natural product
F ⊗ G : C ⊗ D → E ⊗ F by acting separately on each factor (and extending to direct sums).

3
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Definition 1.1.4. Let f : X → Y be an morphism in C. Then an object K ∈ C together with
k : K → X satisfying f ◦ k � 0 is a kernel of f if for all other morphisms k′ : K′ → X with
f ◦ k′ � 0 there exists a unique g : K′ → K such that k′ � k ◦ g. Such a pair (K, k) is denoted by
ker f (if it exists). In this case if K � 0 then f is a monomorphism.

The formally dual notion is called a cokernel. That is, a pair (C, c : Y → C) with c ◦ f � 0
is a cokernel of f if for all other morphisms c′ : Y → C′ such that c′ ◦ f � 0 there exists
h : C → C′ such that c′ � h ◦ c. If it exists we denote it by coker( f ) :� (C, c), and if C � 0 then
f is an epimorphism.

It is a standard exercise to verify that kernels and cokernels are each unique up to unique
isomorphism [29, 15].

Definition 1.1.5. A category C is abelian if all morphisms f : X → Y fit into a commutative
diagram

K X I Y Ck i

f

j c

such that ker( f ) � (K, k), coker( f ) � (C, c), ker(c) � (I , j), and coker(k) � (I , i). Such a diagram
is called a canonical decomposition of f , and im( f ) :� I is called the image of f .

The category Vec of k-vector spaces and its full subcategory Vec of finite dimensional vector
spaces are both examples of (k-linear) abelian categories.

Definition 1.1.6. Let X be an object of an abelian category C. A subobject of X is a monomorphism
ι : Y → X or by abuse, just Y. Similarly a quotient of X is an epimorphism π : X → Z, or just Z.
If ι : Y → X is a subobject then the quotient is X/Y :� coker( f ).

The object X is simple if its only subobjects are 0 and itself, and is semisimple if it is a direct
sum of simple objects. The category C is semisimple if all of its objects are semisimple, and is
finitely semisimple if C has finitely many isomorphisms classes of simple objects.

Lemma 1.1.7 (Schur’s lemma). If f : X → Y is a morphism between simple objects in an abelian
category C, then f is an isomorphism or zero.

In particular C(X → X) is made a k-algebra by the subspace spanned by idX , so if X is
simple then C(X → X) is a division algebra. We assume that k is algebraically closed, and thus
in this case whenever C(X → X) is finite dimensional actually C(X → X) � k.

Definition 1.1.8. An object X of an abelian category C has finite length if there exists a chain of
monomorphisms

0 � X0 ↪→ X1 ↪→ · · · ↪→ Xn � X

with the successive quotients Xi+1/Xi all simple.

Definition 1.1.9. An abelian category C is locally finite if dimC(X → Y) < ∞ for all X,Y ∈ C,
and all objects of C have finite length.

We assume that all of our abelian categories are locally finite.

Definition 1.1.10. A sequence of morphisms · · · → Xi−1
fi−1−−→ Xi

fi−→ Xi+1 → · · · is exact if we
have im( fi) � ker( fi+1) for all i. A functor F is left (respectively, right) exact if for all (short) exact
sequences 0 → X → Y → Z → 0 the image sequence 0 → F(X) → F(Y) → F(Z) (respectively,
F(X) → F(Y) → F(Z) → 0) is exact.
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Definition 1.1.11. An object P of an abelian category C is projective if the hom-functor C(P → −)
is exact. An object X of C has a projective cover if there is an epimorphism p : P → X with P
projective such that for all other epimorphisms q : Q → X with Q projective there exists an
epimorphism e : Q → P such that q � p ◦ e.

The category C has enough projectives if every simple object has a projective cover. If C
is locally finite, has finitely many isomorphism classes of simple objects, and has enough
projectives, then C is finite. Note that every finitely semisimple category is automatically finite.

Definition 1.1.12. If C and D are locally finite abelian categories then there is an abelian category
C �D called Deligne’s tensor product [7] and a functor � : C × D → C �D such that: for every
abelian category E and functor F : C ×D → E which is right exact in both variables there exists
a unique right exact functor F : C �D → E such that F � F ◦�.

Proposition 1.1.13. When C and D are finitely semisimple the naïve tensor product C ⊗ D and the
Deligne product C �D are equivalent.

Proof. The hypotheses imply that C ⊗ D is finitely semisimple, and the universal property of
Definition 1.1.12 may be checked directly in this case.

1.2 Monoidal, rigid, pivotal, and braided categories

Definition 1.2.1. A monoidal category is a category C equipped with a (bi)functor ⊗ : C × C → C
called the monoidal (or tensor) product, an object 1 ∈ C called the unit, and natural isomorphisms
(with X,Y, Z ∈ C)

αX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z),
lX : 1 ⊗ X → X, and
rX : X ⊗ 1→ X

called the associator, left unitor, and right unitor respectively, such that the diagrams

(W ⊗ X) ⊗ (Y ⊗ Z)

((W ⊗ X) ⊗ Y) ⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y)) ⊗ Z W ⊗ ((X ⊗ Y) ⊗ Z)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y⊗idZ

αW,X⊗Y,Z

idW ⊗αX,Y,Z

(associativity constraint)

(X ⊗ 1) ⊗ Y X ⊗ (1 ⊗ Y)

X ⊗ Y

αX,1,Y

rX⊗idY idX ⊗lY

(identity constraint)

commute for all W,X,Y, Z ∈ C.

The categories Vec and Vec are both examples of monoidal categories under the tensor
product of vector spaces. We defer more examples until the end of this section.

If C has the structure of a monoidal category with monoidal product ⊗ and associator
α, then there is another monoidal product ⊗mop given by X ⊗mop Y :� Y ⊗ X. We obtain
another monoidal category Cmop from the product ⊗mop with the same unit as C, the associator
α

mop
X,Y,Z :� α−1

Z,Y,X , and by swapping the roles of the unitors in C.

Definition 1.2.2. The category Cmop is called the monoidal opposite of C.



6 Preliminaries

Definition 1.2.3. Let F : C → D be a functor between monoidal categories. The functor F is
monoidal if it is equipped with a natural isomorphism1 (for X,Y ∈ C)

JX,Y : F(X) ⊗D F(Y) → F(X ⊗C Y)

called the tensorator and an isomorphism ι : 1D → F(1C) called the identitor, such that the
diagrams

(F(X) ⊗D F(Y)) ⊗D F(Z) F(X) ⊗D (F(Y) ⊗D F(Z))

F(X ⊗C Y) ⊗D Z F(X) ⊗D F(Y ⊗C Z)

F((X ⊗C Y) ⊗C Z) F(X ⊗C (Y ⊗C Z))

αDF(X),F(Y),F(Z)

JX,Y⊗D idF(Z) idF(X) ⊗D JY,Z

JX⊗CY,Z JX,Y⊗CZ

F(αCX,Y,Z)

(associativity constraint)

1D ⊗D F(X) F(X)

F(1C) ⊗D F(X) F(1C ⊗C X)

lDF(X)

ι⊗idF(X)

J1,X

F(lCX)

(left identity constraint)

F(X) ⊗D 1D F(X)

F(X) ⊗D F(1C) F(X ⊗C 1C)

rDF(X)

idF(X) ⊗ι
JX,1

F(rCX )

(right identity constraint)

commute for all X,Y, Z ∈ C.

We write F : C −−→⊗ D to indicate that F is a monoidal functor between monoidal categories.

Definition 1.2.4. Let η : F → G be a natural transformation of monoidal functors F and
G : C −−→⊗ D with respective tensorators J and K. The natural transformation η is monoidal if the
diagram

F(X) ⊗ F(Y) F(X ⊗ Y)

G(X) ⊗ G(Y) G(X ⊗ Y)

ηX⊗ηY

JX,Y

ηX⊗Y

KX,Y

is commutative for all X,Y ∈ C.

Monoidal categories C and D are monoidally equivalent (or simply C ⊗' D) if there is an
equivalence (F,G, η, ε) of ordinary categories with F and G monoidal functors, and η and ε
monoidal natural transformations. A monoidal category C is strict if its associator and left and
right unitors are all identity morphisms.

Example 1.2.5. The category End(C) of endofunctors of any ordinary category C is a strict
monoidal category under composition of functors, with unit the identity functor.

Theorem 1.2.6 (Mac Lane’s Strictness Theorem). Every monoidal category C is monoidally equivalent
to a strict monoidal category Co.

Proof. This is Theorem XI.3.1 of [29].
1We use a superscript to distinguish the monoidal products, associators, and so on of the categories in question.



§1.2 Monoidal, rigid, pivotal, and braided categories 7

Corollary 1.2.6.1 (Mac Lane’s Coherence Theorem). Let C be a monoidal category. Every diagram
with edges labelled by tensor products of α, l, r, and identity morphisms is commutative.

Definition 1.2.7. An object X of a monoidal category has left dual X∗ if there exist morphisms
evX : X∗ ⊗ X → 1 and coevX : 1→ X ⊗ X∗ such that the composites

X
coevX ⊗ idX−−−−−−−−→ (X ⊗ X∗) ⊗ X

αX,X∗ ,X−−−−−→ X ⊗ (X∗ ⊗ X) idX ⊗ evX−−−−−−−→ X

X∗ idX∗ ⊗ coevX−−−−−−−−−→ X∗ ⊗ (X ⊗ X∗)
α−1

X∗ ,X,X∗
−−−−−−→ (X∗ ⊗ X) ⊗ X∗ evX ⊗X∗

−−−−−−→ X∗ (1.2.1)

are both identities. A right dual of X ∈ C is an object X∗ which has X as a left dual.

Duals on either side are unique up to unique isomorphism [12]. The name left dual comes
from the fact that a left dual in the monoidal category End(C) (of Example 1.2.5) is exactly a left
adjoint functor.

Definition 1.2.8. A monoidal category C is rigid if every object has a left and a right dual.

Given a morphism f : X → Y in a monoidal category C, rigidity of C gives a way to construct
a morphism f ∗ : Y∗ → X∗ by forming a composite

Y∗ r−1
Y∗

−−→ Y∗ ⊗ 1
Y∗⊗coevX−−−−−−−→ Y∗ ⊗ X ⊗ X∗ Y∗⊗ f ⊗X∗

−−−−−−−→ Y∗ ⊗ Y ⊗ X∗ evY ⊗X∗
−−−−−−→ 1 ⊗ X∗ lX∗

−−→ X∗. (1.2.2)

Here we have written objects of C to mean the identity on that object, and we will often use this
convention in the sequel. Of course there is also a dual morphism f∗ : Y∗ → X∗ on the other
side, and in fact we have the following2.

Proposition 1.2.9. The operations (−)∗ and (−)∗ define monoidal functors C −−→⊗ Cop,mop. There are
monoidal natural isomorphisms (X∗)∗ � X � ( X∗ )∗.

Corollary 1.2.9.1. Every rigid monoidal category C is monoidally equivalent to its opposite, monoidal
opposite category Cop,mop.

Proposition 1.2.10 (Frobenius reciprocity). In a rigid monoidal category C for all X,Y, Z ∈ C there
are canonical isomorphisms

C(X∗ ⊗ Y → Z) � C(Y → X ⊗ Z).

Proof. The map is just a slight generalisation of (1.2.2).

Definition 1.2.11. A monoidal natural isomorphism φX : X → X∗∗ is a pivotal structure. A rigid
monoidal category C equipped with a pivotal structure is pivotal [16].3 A monoidal functor
F : C −−→⊗ D between pivotal categories is pivotal if F(φC

X) : F(X) → F(X∗∗) � F(X)∗∗ is just φD
X .

The form of (1.2.2) makes it clear that the approach of describing duals using diagrams
of arrows labelled by morphisms will quickly become unmanageable. Fortunately there is a
rectangular string diagram calculus in monoidal categories, which is particularly powerful in the
rigid and pivotal case, and which greatly simplifies depictions of composites of the above kind.

2This is a standard exercise, see Remark 2.10.3 of [12].
3Note that a canonical natural isomorphism ∗X → X∗ is readily obtained from any such natural isomorphism φX .

Pivotal structures are not unique.



8 Preliminaries

Definition 1.2.12. The string diagram associated to a morphism f : X → Y in a monoidal
category C is the diagram

f

X

Y

, or sometimes f

X

Y

.

Here strings are labelled by objects of C and the point is labelled by f . We sometimes draw a box
over a point containing its label so that there can be no confusion as to what is being labelled.

We declare that vertical juxtaposition of morphisms is composition, and that horizontal
concatenation gives the tensor product. That is, there are equalities of diagrams

f

X

g

Y

Z

� f ◦ g

X

Z

, and f

W

Y

g

X

Z

�

W

Y

X

Z

f ⊗ g � f ⊗ g

W ⊗ X

Y ⊗ Z

. (1.2.3)

Let us always suppose that string diagrams are drawn inside a rectangle ΣR :� I × I, with
some number of strings meeting the top and bottom of the rectangle. Given two diagrams D
and D′, if strings meet the top edge of D in the same places where strings meet the bottom edge
of D′, and the labels of the respective strings agree, then we can glue the diagrams together and
obtain a single diagram D′ ◦ D.

In fact we can be more flexible. We allow diagrams to be modified by isotopy rel boundary
in the rectangle, subject to the requirement that all of the strings in a diagram always travel up
the page and are never horizontal. By permitting local applications of the local replacement rules
(1.2.3) inside diagrams, for any string diagram we can compute a morphism in C by reducing
its contents to a single labelled point (the resulting label will be some series of composites
and tensor products in C). If from left to right the bottom edge of our original diagram meets
strings labelled by X1 , . . . ,Xn and the top edge meets strings labelled by Y1 , . . . ,Ym , then after
reduction we obtain a morphism f : X1 ⊗ · · · ⊗ Xn → Y1 ⊗ · · · ⊗ Ym .4 It is well known5 that the
morphism f so obtained is unique.

Now suppose that C is rigid. Heretofore diagrams with horizontal-passing strings have
been unacceptable, but we now declare

X∗ X

�

1

X∗ X

evX and
X X∗

�

1

X X∗

coevX

i.e. that left-oriented caps and cups are the string diagrams for the evaluation (evX) and
coevaluation (coevX) morphisms respectively. That is, we have dropped the labelled points evX

4If C is not strict then we must choose a way to associate these tensor products in order to obtain an actual
morphism of C. By the coherence theorem Corollary 1.2.6.1 all ways of doing this are consistent, and so in practice
there will be no ambiguity.

5For instance, see Theorem 3.1 of the comprehensive review [38] and subsequent references.
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and coevX , and have omitted the strings corresponding to the unit 1. So that string labelling
remains consistent it is also convenient to now impose that all strings be oriented, with strings
travelling down the page corresponding to the left dual of their label. This allows us to label
the cup and cap strings above simply by X. For example, in this language the identities (1.2.1)
correspond to formal equalities (note that identity morphisms can be represented by empty
strings)

X

X

�

X

X

and

X

X

�

X

X

.

Nonetheless in practice we are often able to omit the string orientations without hindering their
inference. Consequently we are now able to permit isotopies in which strings pass down the
page as well as up, so long as strings never pass horizontally to the right6 (since our cups only
pass to the left, an ambiguity would arise). It is again well known [38] that rectangular string
diagrams in rigid categories unambiguously correspond to morphisms in the category. For
example, in this language the dual morphism f ∗ in (1.2.2) of f : X → Y is just the upside-down
flip

Y∗

X∗

f ∗ �

Y∗

X∗

f .

We can interpret the structure of a pivotal category as lifting this final restriction and enabling
a theory of arbitrary diagrams with arbitrary isotopy rel boundary—which in fact can be drawn
in any 2-manifold—and we address this further in Section 1.4.

Definition 1.2.13. A monoidal category C is braided if it is equipped with a natural (in both
variables) isomorphism

bX,Y : X ⊗ Y → Y ⊗ X

called the braiding, such that the diagrams

X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y)

(X ⊗ Y) ⊗ Z (X ⊗ Z) ⊗ Y

Z ⊗ (X ⊗ Y) (Z ⊗ X) ⊗ Y

X⊗bY,Z

α−1
X,Y,Z α−1

X,Z,Y

bX⊗Y,Z bX,Z⊗idY
α−1

Z,X,Y

(left hexagon identity)

(X ⊗ Y) ⊗ Z (Y ⊗ X) ⊗ Z

X ⊗ (Y ⊗ Z) Y ⊗ (X ⊗ Z)

(Y ⊗ Z) ⊗ X Y ⊗ (Z ⊗ X)

αX,Y,Z

bX,Y⊗Z

αY,X,Z

bX,Y⊗Z idY ⊗bX,Z

αY,Z,X

(right hexagon identity)

are commutative for all X,Y, Z ∈ C.
A braided monoidal category is symmetric if bY,X ◦ bX,Y � idX⊗Y for all X,Y ∈ C.

As the name suggests, string diagrams in braided monoidal categories admit a particularly
elegant representation of the braiding. We simply declare

6Other authors replace labelled points with labelled coupons (balls of some finite radius), and state this condition
as “coupons don’t rotate” [21, 38].
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bX,Y

X ⊗ Y

Y ⊗ X

�

X

XY

Y

and b−1
X,Y

X ⊗ Y

Y ⊗ X

�

X

X Y

Y

so that the braiding composed with its inverse can be untangled by pulling the strings under
one another. With this interpretation, the left hexagon identity asserts that

ZYX

X YZ

�

X ⊗ Y Z

Z X ⊗ Y

and the right hexagon identity is the analogous fact for the opposite crossing orientation.

Definition 1.2.14. The braided opposite (or reverse) Cbop of a braided monoidal category C is the
same underlying monoidal category as C, equipped with the new braiding bbop

X,Y :� b−1
Y,X .

Definition 1.2.15. Let F : C −−→⊗ D be a monoidal functor between braided monoidal categories
C and D, with respective braidings b and c. Then F is braided if the diagram

F(X ⊗ Y) F(Y ⊗ X)

F(X) ⊗ F(Y) F(Y) ⊗ F(X)

F(bX,Y)

JX,Y

cF(X),F(Y)

JY,X (1.2.4)

is commutative for all X,Y ∈ C.

Note that in contrast to the notion of a monoidal functor, being a braided monoidal functor
merely imposes a condition (as opposed to requiring some additional data, e.g. of a tensorator).

If C and D are braided monoidal categories then they are braided equivalent if there is a
monoidal equivalence (F,G, η, ε) with F and G braided. The following lemma eases the burden
in producing a monoidal or braided monoidal equivalence.

Proposition 1.2.16. Let F : C → D be a monoidal functor between monoidal categories which is part
of an equivalence when considered as a functor between ordinary categories. Then F is part of a monoidal
equivalence. If F is braided then F is part of a braided equivalence.

Proof. Every equivalence (F,G, η, ε) can always be made an adjoint equivalence by replacing ε
only [29]. If F is monoidal then its tensorator can be transported to G over the adjunction, in
which case η and ε become monoidal natural transformations (see Remark 2.4.10 of [12]). One
then checks directly that if F is braided then G (with its new tensorator) is braided too.

Definition 1.2.17. A locally finite k-linear abelian rigid monoidal category C is tensor if
C(1→ 1) � k. A tensor category C is fusion if C is finitely semisimple.

Remark 1.2.18. Monoidal categories are a categorification7 of the ordinary notion of an monoid,
lifting algebraic equalities up to coherence isomorphisms; upon taking isomorphism classes the

7This is a overloaded term in the literature, and we mean it in a particular narrow sense.
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tensor product ⊗ descends to a monoid operation with unit 1. Since our categories always have
direct sums ⊕ as well, taking the so-called Grothendieck group we actually obtain ring.

A braided monoidal category then categorifies a commutative ring, since any braiding at
all descends to an equality asserting commutativity of ⊗. In the next sections we will see
categorifications of modules for a ring, and of their centers.

Example 1.2.19. The categories Vec and Vec, along with the category Rep G of finite dimensional
representations of a finite group G are all symmetric monoidal categories under their usual
tensor product operation. The center construction of Section 1.5 will give a way to construct
braided monoidal categories from arbitrary monoidal ones. The categories Vec and Rep G are
pivotal and fusion with respective sets of simple objects the one-dimensional vector spaces (i.e.
isomorphic to k thought of as a k-vector space—the tensor unit), and the finite dimensional
irreducible representations of G. More exotic examples of fusion categories include finite
dimensional representations of quantum groups such as Rep Uqsl2 for q a root of unity (after
taking the quotient by the so-called “negligible ideal”) [27], and the even parts EH1 and
EH2 of the Extended Haagerup subfactor [3], but defining these far exceeds the scope of this
thesis—though by different orders of magnitude.

1.3 Module categories for a monoidal category

Definition 1.3.1. Let C and M be categories with C monoidal. Then M is a left C-module
category if it is equipped with an action functor

. : C ×M → M

and natural isomorphisms (with X,Y ∈ C and M ∈ M)

mX,Y,M : (X ⊗ Y) . M → X . (Y . M), and
lM : 1 . M → M

called the module associator and unitor respectively, such that the diagrams

(X ⊗ Y) . (Z . M)

((X ⊗ Y) ⊗ Z) . M X . (Y . (Z . M))

(X ⊗ (Y ⊗ Z)) . M X . ((Y ⊗ Z) . M)

mX,Y,Z.MmX⊗Y,Z,M

mX,Y,Z.M

mX,Y⊗Z,M

X.mY,Z,M

(associativity constraint)

(X ⊗ 1) . M X . (1 . M)

X . M

mX,1,M

rX.M X.lM

(identity constraint)

commute for all X,Y, Z ∈ C and M ∈ M.

There is of course the dual notion of a right C-module category, which is concisely defined
as a left Cmop-module category. We will often write / : M ×C → M for its action, and similarly
use nM,X,Y and rM for its module associator and unitor isomorphisms.

Definition 1.3.2. A category M which is simultaneously a left C- and right D-module category
with respective module associators m and n is a (C ,D)-bimodule category if it is equipped with
an additional natural isomorphism (with X ∈ C, M ∈ M, and Y ∈ D)

sX,M,Y : (X . M) / Y → X . (M / Y)
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called the bimodule (or middle) associator, such that the diagrams (with X,Y ∈ C and Z,W ∈ D)

(W ⊗ X) . (M / Y)

((W ⊗ X) . M) / Y W . (X . (M / Y))

(W . (X . M)) / Y W . ((X . M) / Y)

mW,X,M/YsW⊗X,M,Y

mW,X,M/Y

sW,X.M,Y

W.sX,M,Y

(left middle constraint)

(X . M) / (Y ⊗ Z)

X . (M / (Y ⊗ Z)) X . (M / (Y ⊗ Z))

X . ((M / Y) / Z) (X . (M / Y)) / Z

sX,M,Y⊗Z nX.M,Y,Z

X.nM,Y,Z

sX,M/Y,Z

sX,M,Y/Z

(right middle constraint)

are commutative for all W,X ∈ C, M ∈ M, and Y, Z ∈ D.

We sometimes write MC and MD to emphasise that M has a left C- or right D-module
category structure, and similarly use MC D when M is a (C ,D)-bimodule category.

Example 1.3.3. Every monoidal category C is a (C , C)-bimodule category over itself, with the
left and right action given by tensor product on each side. Both of the associativity isomorphisms
are just the associator α of C, and similarly for the unitors.

Proposition 1.3.4. Every monoidal functor F : C −−→⊗ D canonically turns a left D-module category
MD into a left C-module category MF . The analogous statement for right D-module and bimodule

categories holds as well.

Many common examples of module categories arise from a monoidal functor in this way
(e.g. see Section 7.4 of [12]). For example Rep H is made a (Rep G,Rep G)-bimodule category
for G a finite group and H a subgroup by the restriction functor ResG

H .

Definition 1.3.5. Every left module category MC can be considered a right module category
MCmop called its flip [8]. Similarly one can check directly that every bimodule category MC D
corresponds to module categories MCmop⊗D (the right flip) and MC⊗Dmop (the left flip). Note
here Cmop ⊗ D and C ⊗ Dmop are made monoidal categories by using the tensor product in
each factor and extending over direct sums.

Definition 1.3.6. Let F : M → N be a functor between left C-module categories. Then F is a
C-module functor if it is equipped with a natural isomorphism (with X ∈ C and M ∈ M)

cX,M : F(X . M) → X . F(M)

called the modulator, such that the diagrams

(X ⊗ Y) .N F(M)

F((X ⊗ Y) .M M) X .N (Y .N F(M))

F(X .M (Y .M M)) X .N F(Y .M M)

mN
X,Y,F(M)cX⊗Y,M

F(mM
X⊗Y,M)

cX,Y.MM

X.N cY,M

(associativity constraint)

F(1 .M M) 1 .N F(M)

F(M)
F(lMM )

c1,M

lNF(M)

(identity constraint)

commute for all X,Y ∈ C and M ∈ M.
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Of course there is also the formally dual notion of a right D-module functor obtained by
setting C :� Dmop above, with a modulator we typically denote by dM,X . From now on we
suppress the superscript C, D, M, and N annotations when no ambiguity can arise. Similarly,
when it eases readability we drop an explicit tensor product X ⊗Y in favour of the concatenation
XY.

Definition 1.3.7. Let F : M → N be a functor between (C ,D)-bimodule categories M and N
with respective bimodule associators s and t. Suppose that F is simultaneously a left C- and
right D-module functor with respective modulators c and d. Then F is a (C ,D)-bimodule functor
[19] if the diagram

F((X . M) / Y) F(X . M) / Y

F(X . (M / Y)) (X . F(M)) / Y

X . F(M / Y) X . (F(M) / Y)

dX.M,Y

F(sX,M,Y) cX,M/Y

cX,M/Y tX,F(M),Y

X.dM,Y

(1.3.1)

commutes for all X ∈ C, M ∈ M, and Y ∈ D.

Definition 1.3.8. Let M and N be left C-module categories, and let F and G : M → N be a
pair of left C-module functors. Then a natural transformation η : F → G is a morphism of left
C-module functors if the diagram

F(X . M) G(X . M)

X . F(M) X . G(M)

cX,M

ηX.M

dX,M

X.ηM

commutes for all X ∈ C and M ∈ M. The formally dual notion for right C-module functors is
clear.

A morphism of (C ,D)-bimodule functors is just a natural transformation which is simultaneously
a morphism of left C- and right D-module functors.

If M and N are (bi)module categories then they are equivalent as (bi)module categories if
there is an equivalence (F,G, η, ε) with F and G morphisms of (bi)module functors. We write
[ MC → NC ] for the category of left C-module functors, and so on for right D-module and
(C ,D)-bimodule functors. There is similarly a strictness and coherence theorem8 for module
categories (and thus also bimodule categories by taking flips).

Theorem 1.3.9. Every left C-module category M is equivalent to a left C-module category where the
module associator and unit isomorphisms are the identity.

Proposition 1.3.10. Let M be a left C-module category. There are canonical isomorphisms (with X ∈ C,
and M,N ∈ M)

M(X∗ . M → N) �M(M → X . N).

Proof. The proof proceeds in a fashion completely analogous to the proof of the same fact
Proposition 1.2.10 for monoidal categories.

8See Remark 7.2.4 of [12].
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Definition 1.3.11. Let MC and NC be module categories. A functor F : M × N → E is C-
balanced if9 it is equipped with a natural (in each variable) isomorphism aM,X,N : F(M / X,N) →
F(M,X . N) such that the diagram

F(M,X . (Y . N))

F(M, (X ⊗ Y) . N) F(M / X,Y . N)

F(M / (X ⊗ Y),N) F((M / X) / Y,N)

(M,mX,Y,N ) aM,X,Y.N

(nM,X,Y ,N)
aM,X⊗Y,N aM/X,Y,N

is commutative for all X,Y ∈ C, M ∈ M, and N ∈ N .
If C is a finite tensor category there is a Deligne product M �

C
N of module categories [9] and a

functor �
C

: M ×N → M �
C
N , which satisfies the following universal property (analogous to

that of Definition 1.1.12): for every finite abelian category E and right exact in both variables
C-balanced bifunctor F : M ×N → E there exists a unique right exact functor F : M �

C
N → E

such that F � F ◦�
C

. When M and N are respectively (D , C)- and (C , E)-bimodule categories
then M �

C
N is naturally a (D , E)-bimodule category.

1.4 Formal diagrams of morphisms

In Section 1.2 we introduced string diagrams as a relatively informal but consistent way to
express compositions of morphisms in monoidal categories, and especially pivotal categories.
Every argument via (valid) string diagram manipulations can be translated into a chain of
corresponding algebraic equalities upon inspection, and this alone is a very compelling argument
for their use.

Nonetheless we stress that for any pivotal category C there is a completely formal theory of
string diagrams in any 2-manifold Σwith boundary.10 The basic definition is the following.

Definition 1.4.1 (String diagram in a 2-manifold). An unlabelled string diagram Σ̃ of shape Σ is a
stratification

∅ � Σ−1 ↪→ Σ0 ↪→ Σ1 ↪→ Σ2 � Σ

subject to the following conditions.

1. (Finiteness): Each∆k :� Σk\Σk−1 itself an oriented k-manifold with finitely many connected
components. We call the connected components of ∆1 the strings.

2. (Transversality): The Σ1-stratum meets the boundary ∂Σ at all points transversely.

3. (Regularity): Each x ∈ Σ \ ∂Σ has a disk neighbourhood U ⊂ Σ which is a cone with

9This is Definition 3.1 of [11].
10There are a number of approaches using a number of different models—both using local relations [39] and

arbitrary isotopy [26, 4, 40]. The resource [38] is a comprehensive review of graphical languages is various settings
(including the pivotal case).
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respect to the stratification; i.e. locally U is of the form

, or , or , etc.

with the blue line segments depicting U ∩ Σ1. This prohibits, for example, strings
terminating with an open end in the interior of Σ.

The conditions 1–3 are motivated by our intent to label points x ∈ Σ0 \ ∂Σ by morphisms of
a monoidal category; morphisms can only be between tensor products of finitely many simple
objects, and we prohibit various topological pathology. Of course there is also the notion of
an isotopy between unlabelled diagrams of shape Σ, being an isotopy of Σ which takes one
stratification to another though stratifications all satisfying 1–3.

Now we want to label an unlabelled string diagram Σ̃ as in Section 1.2. Thus fix a pivotal
category C. Beginning with the strings themselves, suppose we have made an assignment of an
object of C to each connected component of ∆1. For each x ∈ Σ0 \ ∂Σ regularity (condition 3)
implies that there is a disk neighbourhood Ux of x in Σwhich is homeomorphic to a cone on
∂Ux � S1. The finitely many points pL at which ∂Ux intersects strings L ⊂ ∆1 each then acquire
a label with an object of C coming from the label of L. Namely, if L is entering Ux at pL (with
respect to the orientation of L) then we assign the label of L to pL, and if L is leaving at pL then
we assign the left dual of the label of L.

Definition 1.4.2. Let Ω be a 1-manifold. A C-decorated Ω is a labelling of finitely points of Ω
with an object of C. We let

∫
Ω
C denote the set of all such objects.11

Thus an assignment of an object of C to every string L ⊂ ∆1 gives a C-decorated S1 denoted
Bx for each point x ∈ Σ0 \ ∂Σ. In order to label x, distinguish a point • ∈ Bx which is not labelled
and which we call the dot. Reading anticlockwise around Bx starting from the dot we can build
a tensor product of objects of C from the labels we encounter. For example, we would decode
the C-decorated S1 (drawn below with respect to a local neighbourhood of the string diagram
from which it was obtained)

X1

X2
X3

X4

x

as the tensor product Px � ((((1 ⊗ X1) ⊗ X2) ⊗ X3) ⊗ X4). Note by convention we always begin
the product with 1. A label for Bx is then a morphism fx : Px → 1 in C.

Definition 1.4.3. A C-labelling of an unlabelled string diagram Σ̃ of shape Σ is an assignment of
an object of C to every string in Σ̃, and of a morphism in C to every x ∈ Σ0 \ ∂Σ which respects
the string labelling in the way in which we have just described.

We denote the collection of all C-labelled string diagrams of shape Σ by Σ(C).

Of course there is a natural notion of isotopy of C-labelled diagrams.
11We will mostly be interested in the case of Ω � S1 in Chapter 2.
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Theorem 1.4.4. There is a map eval sending rectangular string diagrams (i.e. in ΣR(C)) which do not
meet their vertical boundary to ordinary morphisms in C.

Proof idea. We do not prove the theorem, but we at least explain the idea.12 Being embedded in
a rectangle, diagrams D ∈ ΣR(C) have strings meeting the top and bottom faces and associating
objects of C to the points of intersection. A tensor product P of objects of C can then be read
across the bottom of the rectangle from left-to-right, and a tensor product Q for the top is
obtained by left-to-right reading similarly (by convention we include 1 in these products so that
they are never empty).

We aim to produce a morphism P → Q in C by interpreting diagrams as bottom-to-top
composites as we informally did in in Section 1.2, by cutting the diagram into horizontal strips
which can each be interpreted as tensor products of morphisms in C, and then composing
the strips. It is at this stage that we convert caps and cups into evaluation and coevaluation
morphisms. In order to decode a point x ∈ Σ0 \ ∂Σ labelled by a morphism fx : (· · · (1 ⊗ X1) ⊗
· · · ) ⊗ Xn → 1 in C we use rigidity to migrate those objects Xi coming from strings leaving x
and rising up the page to the target object of fx . This process is schematically depicted below
(with g : X → Y a morphism in C, and suppressing associator isomorphisms for readability).

Y∗

X∗

g 7−→ (evY ⊗X∗) ◦ (Y∗ ⊗ g ⊗ X∗) ◦ (Y∗ ⊗ coevX)

Some ambiguity can arise if a string enters a labelled point x horizontally, since we must perform
a perturbation of the string in order to decode the point as a morphism—and there are two
possible choices. One sees that pivotality of C exactly means that the result of this process is
independent of the choice.

When Σ is a product Ω × I with a 1-manifold Ω, diagrams in Σ(C) have two natural Ω-
boundary components, a bottom Ω × {0} and a top Ω × {1}, each C-decorated by the strings
incident on them. Thus for every pair A and B of C-decorated copies of Ω we have a set
Σ(A → B) of string diagrams with bottom A and top B. There is also a natural composition law
Σ(B → C) × Σ(A → B) → Σ(A → C) by stacking and gluing along the common boundary B.

Definition 1.4.5. There is a diagram category
∫
Ω
C for every 1-manifold Ω and pivotal category

C. The morphisms
∫
Ω
C(A → B) are a quotient of the free k-vector space on Σ(A → B) by

isotopy (making the composition associative on-the-nose), and by a pair of relations called local
replacement and linearity, which we describe below. The identity A → A is just the labelled string
diagram formed from the product A × I using the labels of A.

The local replacement relation imposed on Σ(A → B) asserts that a disk in any string
diagram may be substituted for any other disk which represents the same morphism in C. In
order to decide if two diagrams in disks (with the same C-decorated boundary) represent the
same morphism, we rectify them into rectangles which can be evaluated by Theorem 1.4.4. This
is done by inflating an unlabelled closed interval in their boundary into the top three sides
of a rectangle, with the bottom side formed from the remainder of the boundary. The result
are evaluable rectangles. An example of a rectified string diagram is depicted below, with the

12The algorithm is explained in detail in [40] using the formalism of Penrose diagrams [24].
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chosen unlabelled interval shown in black.

f

g
rectify
7−→

f

g

Since the sets C(X → Y) are vector spaces, there is a notion of a linear relation in the free
vector space on string diagrams Σ(A → B). Namely, a formal scalar multiple λ · D of a diagram
is declared equal to any diagram formed by multiplying a morphism label in D by λ. Moreover
if a diagram D has a morphism label which is a sum f + g of morphisms, then we declare D
to be equal to the formal sum D f + Dg of the diagrams D f and Dg respectively obtained by
replacing the label f + g with f or g.

Thus we obtain vector space homsets
∫
Ω
C(A → B). The category

∫
Ω
C also has a zero object

by labelling an arbitrary point in each connected component of Σwith the zero object of C. In
Chapter 2 we will see that when Ω is connected

∫
Ω
C also has direct sums, so is often a k-linear

category. WhenΩ � I there is not only a category
∫

I C, but horizontal concatenation of diagrams
(which we saw informally above) gives a strict monoidal product. We have the following famous
result (originally due to Joyal and Street [26], see [38] for a summary of related results) on the
structure of pivotal categories.

Theorem 1.4.6. Every pivotal category C is pivotally equivalent to the diagram category
∫

I C.

Proof. It is sufficient to verify that eval descends to a map from
∫

I C(A → B). This is done in
[40, 26].

1.5 The Drinfeld center of a (C , C)-bimodule category

Definition 1.5.1. Whenever M is a (C , C)-bimodule category we can form the Drinfeld center13,
a new category where

• its objects are pairs (M, β) for M ∈ M and a natural isomorphism βX : M / X → X . M
(with X ∈ C) called a half-braiding, such that for all X,Y ∈ D the diagram

M / (X ⊗ Y) (M / X) / Y

(X ⊗ Y) . M (X . M) / Y

X . (Y . M) X . (M / Y)

βX⊗Y

nM,X,Y

βX/Y

mX,Y,M sX,M,Y

X.βY

(1.5.1)

is commutative, and
13This notion of Drinfeld center of a bimodule category MC C was first given in [18]. The original notion for a

monoidal category C is much older and due to unpublished work of Drinfeld [12], and appeared in [30, 25].
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• its morphisms (M, β) → (N, γ) are maps f : M → N in M such that for every X ∈ C the
diagram

M / X X . M

N / X X . N

f /X

βX

X. f

γX

(1.5.2)

is commutative.

Morphisms compose because squares of the form (1.5.2) juxtapose, and the identity map for
any (M, β) ∈ Z(M) has underlying morphism the identity on M in M.

It is easy to see that Z( MC C) has direct sums, since the module action functors . and /must
necessarily preserve them. Thus Z( MC C) is a k-linear category.

Example 1.5.2 (Drinfeld center of a monoidal category). Every monoidal category C is itself
naturally a (C , C)-bimodule category (Example 1.3.3), and hence we obtain the Drinfeld center
Z(C) :� Z( CC C) of a monoidal category. The category Z(C) originally appeared in [30, 25],
and has found many applications. One reason is that when C is fusion the category Z(C) is a
so-called modular tensor category [33], which is an object that is extremely overconstrained by
Galois theory and the representation theory of SL(2,Z/nZ). Thus Z(C) can be used to control
C in many cases.

Example 1.5.3 (Drinfeld center of a functor). Every monoidal functor F : C −−→⊗ D naturally
equips a (D ,D)-bimodule category MD D with the structure MF F of a (C , C)-bimodule category
as in Proposition 1.3.4, of which we can also take the center Z( MF F). As a special case, such an
F equips D itself with a (C , C)-bimodule category structure. Thus in particular we can talk of
the center Z(F) :� Z( DF F) of a monoidal functor F.14

Proposition 1.5.4 (Bowtie product). Let F : C −−→⊗ D be a monoidal functor and let MD D be a
(D ,D)-bimodule category. Then there are left and right action functors

n : Z(F) × Z( MF F) → Z( MF F) and
o : Z( MF F) × Z(F) → Z( MF F).

Proof. We set (Y, β) n (M, γ) :� (Y . M, α) with each component αX for X ∈ C defined by the
commutative diagram

(Y . M) / F(X) Y . (M / F(X)) Y . (F(X) . M)

F(X) . (Y . M) (F(X) ⊗ Y) . M (Y ⊗ F(X)) . M.

αX

sY,M,X Y.γX

mF(X),Y,M

mY,F(X),M

βX.M

(1.5.3)

These components are obviously natural, and checking that they obey (1.5.1) amounts to
filling a large square with the associativity constraint diagrams for s and m together with the
half-braiding diagrams for β and γ. For f : (Y1 , β1) → (Y2 , β2) and g : (M1 , γ1) → (M2 , γ2) we
set f n g :� f . g. The fact that f . g is a morphism in Z( MF F) is readily checked by using the

14We calculate a toy example in the next section.
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fact that f and g are themselves morphisms in Drinfeld centers. The action (M, γ)o (Y, β) has
underlying object M / Y for which a half-braiding is constructed completely analogously.

Proposition 1.5.5. The categories Z(C) and Z(F : C −−→⊗ D) are monoidal. More generally, the left
and right actions of Proposition 1.5.4 equip Z( MF F) with a (Z(F),Z(F))-bimodule category structure.

Proof. All of the claims follow from the same computation (note that Z(C) is the center of the
identity functor on C). For (X, β), (Y, γ) ∈ Z(F) and (M, δ) ∈ Z( MF F) the half-braiding identity
(1.5.1) forces the left associator isomorphism to be a morphism

mX,Y,M : ((X, β) ⊗ (Y, γ))n (M, δ) → (X, β)n ((Y, γ)n (M, δ))

in Z( MF F). Consequently mX,Y,M is the desired left associator for n. The unit object in Z(F) is
1Z(F) :� (1D , rD−1

F(−) ◦ lDF(−)), and the unitors are just those in MD D . The fact that the unitors are
morphisms in Z( MF F) now follows directly from the module category axioms. The situation
for o is completely dual.

Proposition 1.5.6. The category Z(C) is braided.

Proof. We set b(X,β),(Y,γ) :� βY for each (X, β), (Y, γ) ∈ Z(C). The fact that each component of b
is a morphism in Z(C) follows from the half-braiding axiom for β combined with naturality
of β. Naturality of b in the second variable amounts to naturality of β, and naturality of b in
the first variable is asserted by the morphism compatibility square (1.5.2). One of the hexagon
identities for β holds by the definition (1.5.1) of a half-braiding, and the other follows from the
definition of the braiding on the tensor product (X, β) ⊗ (Y, γ).

Proposition 1.5.7. If C is rigid or pivotal then so is Z(C). In general Z(F : C −−→⊗ D) is rigid when
C and D both are, and is pivotal when in F is a pivotal functor between pivotal categories.

Proof. The left dual of (X, β) ∈ Z(F : C −−→⊗ D) is (X∗ , γ) with γY � β∗Y∗ , since monoidal functors
preserve duals.

If F is pivotal it is sufficient to verify that each component of the pivotal structure on D is a
morphism in Z(F). This slightly subtle; the proof of Proposition 2.3 in [21] of the F � idC case
directly upgrades to the case of nontrivial F.

Theorem 1.5.8. If C and M are finitely semisimple then so is Z( MC C).

Proof. A standard proof in the M � C case is in [33], and [18, 11] each contain the general
claim.

Proposition 1.5.9. Let MD D be a (D ,D)-bimodule category. Every monoidal functor F : C −−→⊗ D
induces canonical image and restriction functors

F∗ : Z(C) � Z( CC C) → Z( DF F) � Z(F) and F∗ : Z( MD D) → Z( MF F).

Proof. Given (X, β) ∈ Z(C) we let F∗(X, β) be the object (F(X), α) of Z(F) with each component
αY defined by the composite

F(X) ⊗ F(Y) F(X ⊗ Y) F(Y ⊗ X) F(Y) ⊗ F(X).JX,Y F(βY) J−1
Y,X

Naturality of α is immediate from the naturality of J and β. On morphisms f : (X, β) → (Y, γ)
we set F∗( f ) � F( f ), which yields a morphism in Z(F) by applying F to (1.5.2). This data
obviously assembles into a functor.
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To define F∗ just note that given (M, γ) ∈ Z( MD D) we obtain an object (M, γF(−)) of Z( MF F)
by whiskering—there is nothing to check. Setting F∗( f ) � f on morphisms yields the desired
functor.

1.6 Toy example: Z of ResG
H : Rep G → Rep H for G cyclic

We begin with essentially the simplest possible example. Given any (k-linear) monoidal category
C there is an associated canonical monoidal functor KC : Vec → C, defined by picking-out the
tensor unit. We simply send n direct sum copies of the unit 1Vec (from a skeleton of Vec) to the
same number of direct sum copies of 1C , and the extension of the definition of KC to morphisms
by preserving identities is clear as well. Monoidality of KC is obtained just using the unitors
in Vec and C. Indeed, it is easy to see that any monoidal functor Vec → C must be naturally
isomorphic to KC .

Lemma 1.6.1. Let F : C −−→⊗ D be a monoidal functor and let (X, β) ∈ Z(F). Then when Y �
⊕

i Yi

is any direct sum of objects of C, the component βY : X ⊗ F(Y) → F(Y) ⊗ X is completely determined by
the components βYi . In particular, when C is semisimple any such natural transformation β is completely
determined by its components at the simple objects of D.

Proof. If ι : Yi → Y is an inclusion, naturality of β yields that βY ◦ (X ⊗ F(ι)) � (F(ι) ⊗ X) ◦ βYi .
As we allow Yi to vary over all direct summands, we obtain βY as a direct sum of the maps
(ι ⊗ X) ◦ βYi , as desired.

This is a manifestation of the general phenomenon that natural transformations in semisimple
categories are completely determined by their components on the simple objects. Conversely, a
natural transformation can be defined by specifying its components on the simple objects exactly
when those components pairwise satisfy every naturality square which can be drawn for them.

Proposition 1.6.2. There is a monoidal equivalence C ⊗' Z(KC).

Proof. Given (X, β) ∈ Z(KC) an object, by Lemma 1.6.1 every component of β is determined
by β1 : X ⊗ KC(1) → KC(1) ⊗ X. Equivalently, using the unitors of C this is the same data
an automorphism β̃1 : X → X. But now suppressing the tensor unit in C the half-braiding
hexagon (1.5.1) for (X, β) asserts15 that β̃1

2
� β̃1. Thus β̃1 � idX and the half-braiding β is

unique. Any morphism in C commutes with the identities, so C and Z(KC) are equivalent
categories. The forgetful functor U : Z(KC) → C is monoidal, so the equivalence is as well by
Proposition 1.2.16.

Henceforth in this section let G � Cn be a cyclic group with generator g, let H ⊆ G be a
subgroup of order m, and let R � ResG

H : Rep G → Rep H be the restriction functor. Fixing a
primitive nth root of unity ζ, in this situation G has n distinct irreducible representations τn

k
(for 0 ≤ k < n), where in τn

k the element g l ∈ G acts as multiplication by ζkl .

Lemma 1.6.3. Every object (π, β) of Z(R) has the natural isomorphism β completely determined by the
component βτn

1
: π ⊗ τn

1 → τn
1 ⊗ π, or equivalently, an endomorphism L of π for which Ln � id.

Proof. By the argument of Lemma 1.6.1 exploiting the naturality of β, we find that the components
of β are determined by the n components corresponding to the n 1-dimensional irreducible
representations of G (the simple objects of Rep G). Given any such component βτn

k
: π ⊗ τn

k →
15This is a well-known consequence (Remark 2.2 of [36]) of the half-braiding axiom, which follows from naturality

of β and the fact that 1 ⊗ 1 � 1. We will see a variation of this in the proof of Proposition 3.2.3.
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τn
k ⊗π for 0 ≤ k < n, the fact that Rep H is a symmetric monoidal category allows us to commute

the tensor product in the target, and upon taking duals we equivalently obtain a family of
components β̃τn

k
: π → π ⊗ (τn∗

k ⊗ τn
k ).

Critically, the representations τn
k are all 1-dimensional, so we can post-compose with the

evaluation isomorphism τn∗
k ⊗ τn

k → 1 and view each morphism β̃τn
k

as the equivalent data of
an endomorphism Lk : π → π.

Applying the symmetric braiding in Rep H and then the manipulation involving duals
which we have just described to the monoidality constraint imposed on β, we conclude that
monoidality is equivalent to the requirement that the map G → End(π) sending gk ∈ G to the
endomorphism Lk be a group homomorphism. Explicitly, we have Lk+l � LkLl (with k + l taken
modulo n).

Hence, all of β is completely determined by the endomorphism L � L1 of π for which
Ln � id, or equivalently, its component βτn

1
.

Lemma 1.6.4. Every object of Z(R) decomposes as a direct sum of objects (π, β) with

• π irreducible (hence 1-dimensional),

• the component βτn
1

equal to an nth root of unity times the braiding in Rep H, and

• any choice of nth root of unity suffices to produce a corresponding object of Z(R).

Proof. The recipe of Lemma 1.6.3 by which we can reconstruct all of β given L ∈ End(π) shows
that if π is a direct sum and if in addition L splits as a direct sum of maps between summands
of π, then the entire object (π, β) is itself a direct sum.

However by Schur’s lemma π splits as a direct sum of multiples of the irreducible repre-
sentations of H, and hence we can always diagonalise the resulting endomorphisms of these
multiples since each satisfies Ln � id (each then has n distinct eigenvalues). As a consequence,
every object of Z(R) is a direct sum of objects (π, β) with π 1-dimensional and β equivalent to
the data of an endomorphism L of π of order n, hence a scalar and nth root of unity.

The recipe by which we can reconstruct all of β can now be applied beginning with any nth
root of unity, since all of the relevant naturality squares are then trivial.

Theorem 1.6.5. The tensor category Z(R) is finitely semisimple with its set of simple objects in
correspondence with pairs (k , l) with 0 ≤ k < m and 0 ≤ l < n. The correspondence maps (k , l) to the
object (τm

k , κ
n
l ,−), where κn

l ,− is that natural isomorphism associated to ζl (for ζ an nth root of unity) by
Lemma 1.6.4. Moreover, we have the formula

(τm
k , κ

n
l ,−) ⊗ (τm

k′ , κ
n
l′,−) � (τm

k+k′ , κ
n
l+l′,−)

when we interpret k + k′ modulo m and l + l′ modulo n.
Hence in particular Z(R) has nm � |G | |H | simple objects.

Proof. We just need to show that X � (τm
k , κ

n
l ,−) and Y � (τm

k′ , κ
n
l′,−) are isomorphic only when

k � k′ and l � l′. Since any isomorphism f : X → Y in Z(R) forgets to an ordinary morphism
f : τm

k → τm
k′ in Rep H, the requirement that k � k′ is immediate from Schur’s lemma. Now

remembering the constraint which a morphism in Z(R) must satisfy, we must have a commuting
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square

τm
k ⊗ 1 1 ⊗ τm

k

τm
k ⊗ 1 1 ⊗ τm

k

f ⊗1

κn
l ,−

1⊗ f

κn
l′ ,−

.

Just thinking of this square as a commutative diagram of linear maps of 1-dimensional vector
spaces, we see directly that either f � 0 or κn

l ,− � κn
l′,−. The former is prohibited if f is an

isomorphism, and the latter holds precisely when l � l′, exactly as desired.
In order to recover the tensor product rule we begin by recalling that τm

k ⊗ τm
k′ � τ

m
k+k′ just by

definition of the irreducible representations τm
k of H which we have been using. The extension

of this fact to the rule

X ⊗ Y � (τm
k , κ

n
l ,−) ⊗ (τm

k′ , κ
n
l′,−) � (τm

k+k′ , κ
n
l+l′,−)

is then not any more difficult; once we forget the morphisms κn
l ,− and κn

l′,− down to linear maps,
one-dimensionality of all of the irreducible representations yields that the half-braiding of X ⊗Y
corresponds to to ζlζl′ � ζl+l′, as desired.

Proposition 1.6.6. The simple objects of Z(R) are all realised as the image of simple objects of
Z(Rep G) under the map F∗ : Z(Rep G) → Z(R). The simple objects of Z(R) in the image of
F∗ : Z(Rep H) → Z(R) are all those of the form (τn

k , κ
n
l ,−) with l a multiple of [G : H].

Proof. Using the correspondence of Theorem 1.6.5 between simple objects of Z(Rep G) and
pairs of bounded integers, the object (τn

k , κ
n
l ,−) is mapped via F∗ to the object (τm

k mod m , κ
n
l ,−).

Hence pairs (k , l) and (k′, l′) give the same simple object under F∗ if and only if k ≡ k′ mod m.
Similarly, F∗ fixes the underlying Rep H-object of any simple object (τm

k , κ
m
l ,−) ∈ Z(Rep H),

and the half-braiding becomes16 κn
[G:H]l ,−.

Remark 1.6.7. In general it should be expected that computing Z(ResG
H) for G a finite group

and H ⊆ G any subgroup is a difficult problem. Indeed, by taking H � G in Theorem 1.6.5 we
described the ordinary center Z(Rep G) when G is cyclic. Already the structure of Z(Rep G)
when G is not cyclic is complicated [5, 20].

1.7 The bimodule functor category [ CC C → MC C]

Just as ak-linear monoidal category C categorifies the notion of a ring, its centerZ(C) categorifies
the ordinary center of a ring. The following proposition gives a precise formulation of this
latter claim, since the center of a ring R is isomorphic to its ring of bimodule endomorphisms.
Our Proposition 1.7.1 was first proved for the M � C case in [35] as Proposition 2.5, and was
extended to the general case in [18] (see Remark 2.2 thereof).

Proposition 1.7.1. The categories Z( MC C) and [ CC C → MC C] are equivalent.
16The fact that there is any change here is perhaps a slightly subtle point. Although the underlying linear map of

the half-braiding does not change at all, by our definitions κm
l ,− should multiply by the lth-power of a fixed mth

root of unity, while κn
l ,− should multiply by the lth power of an nth root of unity. Thus l must change to [G : H]l to

accommodate the fact that the associated linear map is just multiplication by the same underlying constant.
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Proof. Let F : CC C → MC C be a bimodule functor with left modulator c and right modulator
d. We canonically associate an object M :� F(1) of M to F, and moreover have a natural
isomorphism (for X ∈ C)

τX : F(X)
F(rC−1

X )
−−−−−→ F(X ⊗ 1)

cX,1−−−→ X . F(1) � X . M.

Note that the functor − . M : C → M is made a left C-module functor by the left module
associator m of M. We see that the natural isomorphism τX is an isomorphism of C-module
functors by combining naturality and the modulator associativity constraint for c with the
identity constraint for m. Remembering the right C-module functor structure on F, the
isomorphism τX canonically equips the functor − . M with the structure of a right C-module
functor.

Thus it suffices to prove the claim for the full subcategory of [ CC C → MC C] consisting
of those functors F which are left action on a fixed object of M ∈ M with the left modulator
induced by m and an arbitrary right modulator d. For such F we have a natural isomorphism

βX : X . M
F(lC−1

X )
−−−−−→ (1 ⊗ X) . M

d1,X−−−→ (1 . M) / X
F(lMM )
−−−−→ M / X.

We obtain an object (M, β) ∈ Z( MC C), by filling in (1.5.1) with the bimodule functor condition
(1.3.1) to obtain a commutative diagram. On the other hand d is completely determined by βX

since the bimodule actions in C are both just tensor product in C.
The constraint for a morphism η : (− . M) → (− . N) of left C-module functors exactly says

that every component ηX is determined by the component η1 : 1 . M → 1 . N, i.e exactly a
morphism f : M → N. If η is a morphism of (C , C)-bimodule functors then corresponding
constraint for the right module structure precisely asserts that the morphism constraint (1.5.2)
for the Drinfeld center commutes. The equivalence of Z( MC C) and [ CC C → MC C] now follows
immediately.

Proposition 1.7.2. When M � C the equivalence between Z(C) and [ CC C → CC C] is monoidal.

Proof. Recall from Example 1.2.5 that the monoidal structure in [ CC C → CC C] is given by
composition of functors. By Proposition 1.2.16 it is sufficient to produce a tensorator for the
functor Z( CC C) → [ CC C → CC C]. From the explicit description of this functor above we see
that the associator of C suffices for this purpose.
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Chapter 2

Representations of the annular category

In this chapter we prove that the Drinfeld center Z(C) of a pivotal category C is contravariantly
equivalent as a braided monoidal category to the representation category of the annular category
of C (and we define the latter object). Our results are folklore1 in the TQFT (topological quantum
field theory) community, and we check them in much greater detail than has ever been done
previously.
Definition 2.0.1. The annular category of a pivotal category C is the category of diagrams

∫
S1 C

(as in Section 1.4).
Recall that the objects of

∫
S1 C are C-decorated copies of S1, with finitely many points of

S1 labelled by an object of C, for example as depicted in Figure 2.1a with X,Y, Z,W,U ∈ C.
Moreover, we will think of the morphisms from some object ω to some other object τ as
(equivalence classes of) string diagrams drawn in an annulus which have inner boundary ω and
outer boundary τ. The identity ω → ω consists of a finite number of radial arcs, for example as
depicted in Figure 2.1b.

X
Y

Z

U W

(a)

X

X

Y
Y

Z

Z

(b)

Figure 2.1: Objects and identities in
∫

S1 C.
A pair of morphisms f : ω → τ and g : τ → κ are composed by lining up the outer annulus

of f with the inner annulus of g and “fusing” the result along the boundary; for example

f

X
Z Y∗

Y X Y∗ ◦

Y Y∗X

X :�

Z

f

Y∗X

Y
Y∗X

X .

1The only reference we can find is Paragraph 5.2.30 of Kevin Walker’s TQFT notes [41].
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This operation is obviously associative, and thus we obtain a category. We will see in Section 2.2
that

∫
S1 C is k-linear, but

∫
S1 C does not have a natural monoidal structure.

The category
∫

S1 C is closely related to a certain ordinary algebraic gadget called the tube
algebra of C [34]. When C is a finitely semisimple pivotal category the tube algebra is defined to
be the direct sum

Tube(C) �
⊕
X,Y,W

M(X ⊗ W ∗ → W ⊗ Y)

with X,Y,W all ranging over a set Irr(C) of representatives of isomorphism classes of the simple
objects of C. For ζ ∈ M(X1 ⊗ W ∗

1 → W1 ⊗ Y1) and ξ ∈ M(X2 ⊗ W ∗
2 → W2 ⊗ Y2) the product

ζ · ξ is defined to be zero if Y1 , X2, and otherwise is a certain sum over a basis for the homsets
C(W2 ⊗W1 → Z) with Z ∈ Irr(C). We use a similar construction in the proof of Proposition 2.3.3.

The algebra Tube(C) can be thought of as a one-object category, and upon taking the
direct sum completion and Karoubi envelope we obtain a category Mat(Kar(Tube(C))) which is
equivalent to

∫
S1 C. This equivalence has antecedents in the subfactor literature, but it is difficult

to translate this earlier work because the description is given in terms of endomorphisms of
factors, rather than fusion categories. The upshot is that since Tube(C) is a finite dimensional
algebra, explicit computations are tractable with computer assistance [22, 23]. The results of this
chapter then give corresponding implications for Z(C).

2.1 Basic properties of representation categories

The theory of linear representations of classical algebraic gadgets can be realised as a special
case of a particular categorical construction known as taking the “representation category”.

Definition 2.1.1. For any ordinary category C, its (linear) representation category RepC is the
functor category [C → Vec] (also known as the category of Cop presheaves). That is, the objects
of RepC are functors C → Vec, and the morphisms or intertwiners between these functors are
just ordinary natural transformations between them.

For example, let G be a finite group. Each such G is equivalent to the data of a (not k-linear)
category G with a single object • and a morphism for each element of G—the composition
is just multiplication in G. It is easy to see that a (finite dimensional) linear representation
of G is precisely the same data as a functor R : G → Vec; namely elements of G act on the
vector space R(•) by their image under R. The formal equivalence of all of this data is encoded
by the equivalence (actually, isomorphism) of the categories Rep G and the category of finite
dimensional G-representations Rep G.

When C is k-linear we naturally require that RepC consist of only the linear functors from
C to Vec and their natural transformations. In the setting of a finite group G as before there is
an analogous category Gk with a single object, now with its endomorphisms the group algebra
k[G]. It is easy to see that in this case R ∈ Rep Gk is exactly the data of a vector space V ∈ Vec
together with an algebra homomorphism k[G] → End(V), i.e. again just a linear representation
of G, with an analogous equivalence result involving Rep Gk holding.

Proposition 2.1.2. The functor category [C → D] is k-linear whenever D is.

Proof. Sums and scalar multiples of natural transformations of functors C → D are themselves
natural transformations, and so [C → D] has vector space homsets (with a bilinear composition).
There is always a zero functor (mapping all objects and morphisms to the zero object or
morphism), and one now checks directly that we can similarly take direct sums “pointwise in
D”.
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Definition 2.1.3. Let C be a k-linear2 category. Then C has all copowers (or alternatively, is
tensored over Vec) if for all X ∈ C the functor C(X → −) : C → Vec has a left-adjoint functor
− � X : Vec → C. That is, for all U ∈ Vec and X,Y ∈ C there is a natural isomorphism (in Vec)

C(U � X → Y) ∼−−→ Vec(U → C(X → Y)). (2.1.1)

If such a functor−�X : Vec → C exists it is determined up to isomorphism by the adjunction.
We will often omit “�” when no ambiguity is left.

Proposition 2.1.4. Every k-linear category C is tensored over Vec.

Proof. We will just define the functor − � − : Vec × C → C using the skeleton of Vec consisting
of direct sum copies of the unit 1k ∈ Vec. In this case for any X ∈ C we just set k1k � X � kX
(with kY the k-fold direct sum of an object Y with itself). Now given L : k1k → l1k and
f : X → Y ∈ C, we need to define L � f : kX → lY. Let ιZ,i : Z → nZ denote the inclusion of a
single Z ∈ C summand into the ith factor of some number of direct sum copies of Z (we infer n
from context), and similarly let πZ,i : nZ → Z be the projection onto the ith summand. The
1-dimensional endomorphisms of 1k which arise as the composites Li , j � π1k , j ◦ L ◦ ι1k ,i may
now just be interpreted as the matrix entries of L written with respect to the standard basis of
k1k. Finally we set πY, j ◦ (L � f ) ◦ ιX,i � Li , j f . The functor � then extends to all of Vec × C (up
to natural isomorphism). It is easy to see that the adjunction (2.1.1) is then satisfied.

Proposition 2.1.5. If C is k-linear and finitely semisimple, then every F : C → Vec in RepC is
explicitly representable by ⊕

Xi∈Irr(C)
F(Xi)Xi .

Proof. Given F : C → Vec as above, consider the new functor G : C → Vec defined by

G(X) � C
( ⊕

Xi∈Irr(C)
F(Xi)Xi → X

)
.

(As usual we will have G( f : X → Y) just be the linear map given by post-composition with f .)
For any X j ∈ Irr(C) we then just have

G(X j) � C
( ⊕

Xi∈O(C)
F(Xi)Xi → X j

)
� C

(
F(X j)X j → X j

)
� F(X j),

a composite of natural isomorphisms, as desired.

Given an ordinary (not necessarily k-linear) category C and object X ∈ C, let hX be the
hom-functor C(X → −) : C → Set to the category of sets. That is, on objects Y ∈ C we will
have hX(Y) � C(X → Y), and on morphisms f : Y → Z the induced map hX( f ) : C(X → Y) →
C(X → Z) will just be post-composition with f . In this situation, we have the following famous
result.

2In fact, C need only be enriched over k-vector spaces [28]. The notion of C having copowers then naturally extends
to enrichment over any closed monoidal category D.
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Theorem 2.1.6 (Yoneda lemma). For any functor F : C → Set there is an isomorphism

[C → Set](hX → F) � F(X),

where it is understood that in the statement of this theorem it is asserted that the left-hand side is always a
set.

Proof. Naturality of any η ∈ [C → Set](hX , F) implies that the diagram

hX(X) F(X)

hX(Y) F(Y)

ηX

hX( f ) F( f )

ηY

commutes for every f : X → Y in C. Since idX ∈ hX(X) � C(X → X), it follows that

ηY( f ) � ηY( f ◦ idX) � ηY(hX( f )(idX)) � F( f )(ηX(idX)),

and this implies that every component ηY is completely determined by ηX(idX) ∈ F(X).
Conversely, given x ∈ F(X), the equation ηY( f : X → Y) � F( f )(x) at least gives a

well-defined family of functions ηY : hX(Y) → F(Y). In fact they assemble into a natural
transformation hX → F just by the unwrapping of the definition of naturality which we have
just performed. These two constructions are obviously mutually inverse, and so the claim
follows.

The case of F � hY for some Y ∈ C above is especially important. There the Yoneda lemma
says explicitly that there is an isomorphism

[C ,Set](hX → hY) � C(Y → X),

and the proof gives the formula

ηZ( f ) � hY( f )(ηX(idX)) � f ◦ ηX(idX)

for any η : hX → hY and f : X → Z. Thus we obtain the following.

Corollary 2.1.6.1. Given a morphism of representable functors η : hX → hY , every component of η
arises just as post-composition with the same morphism f : Y → X, and any such morphism Y → X
suffices to produce an entire natural transformation hX → hY .

Moreover, there is a fully faithful functor Cop → [C ,Set] (the Yoneda embedding) defined by sending
X to hX and a morphism f : Y → X to the natural transformation η : hX → hY represented by f .

It is clear that Set can safely be replaced with Vec above, and we will use the corresponding
results so obtained without further comment.

2.2 Objects of Rep
∫

S1 C for C semisimple

The purpose of this section is to prove the following proposition, and hence to understand
representations of

∫
S1 C when C is a finitely semisimple pivotal category. To simplify notation,

we define Repop D � (RepD)op for any category D.
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Proposition 2.2.1. When C is finitely semisimple there is a faithful functor F : Repop
∫

S1 C → Z(C).

We begin with a general construction which holds regardless of semisimplicity of C.

Proposition 2.2.2. There is an essentially surjective functor J : C →
∫

S1 C.

Proof. Such an “inclusion” functor JΩ : C →
∫
Ω
C arises for each choice of closed interval in a

1-manifoldΩ; this proposition is a special case, but the idea in general is exactly the same. It will
also be easy to see that JΩ is essentially surjective and up to natural isomorphism independent
of the choice of open interval whenever Ω is connected.

After fixing an open interval K ⊆ Ω observe that K × I is homeomorphic to ΣR of Section 1.4,
and hence (as in Theorem 1.4.4) each f : X → Y in C is canonically represented by a diagram
in K × I. Since K × I ⊆ Ω × I is an inclusion which respects boundaries we obtain a diagram
in ΣΩ � Ω × I associated to f . The associated diagrammatic picture is straightforward; given
f : X → Y, we simply draw the annular diagram

f

X

Y

.

The bottom and top boundaries of the resulting labelled diagram are fixed for all morphisms
X → Y, and it is clear that the construction is functorial when diagrams are taken modulo
isotopy. Hence this data assembles into a functor J.

Essential surjectivity is also not difficult to establish. We first show the claim for Ω � I, in
which case for any ω ∈

∫
I C we have an isomorphism

X Y Z

X ⊗ Y ⊗ Z

idX⊗Y⊗Z with inverse

X Y Z

X ⊗ Y ⊗ Z

idX⊗Y⊗Z .

In the general case so long as Ω is connected there is an isotopy of Ω taking the distinguished
points of any S ∈

∫
Ω
C into the open interval K. From such an isotopy we obtain a morphism

from S to another copy S′ ofΩwith all of its distinguished points in K, and this morphism is an
isomorphism since the isotopy from which it is built is invertible. The diagrammatic perspective



30 Representations of the annular category

is that given S ∈
∫

S1 C of the form

X

Y Z

we always have an isomorphism X Y Z

X

Y Z

(2.2.1)

which “bunches up” the distinguished objects inside a small ball in S1. Again so long as Ω
is connected there is an isotopy of Ω taking any open interval K ⊆ S1 into any other, and
consequently the functor J constructed for a fixed K is naturally isomorphic to any other.

In what follows we sometimes refer to objects of C in place of objects of
∫

S1 C, suppressing a
choice of distinguished point on S1 which actually carries the label. Up to equivalence, we can
assume that C is strict as well by Theorem 1.2.6. Thus similarly when no confusion can arise we
write an unassociated tensor product of objects of C (e.g. XY∗Z) for a copy of S1 with a point
labelled by each object in the tensor product as we pass clockwise. Also note that since C has
direct sums and J is a linear functor, for all X,Y ∈ C the image J(X ⊕ Y) is a direct sum of J(X)
and J(Y)—one simply checks that the conditions defining a direct sum are preserved by any
linear functor. Since J is essentially surjective this implies that

∫
S1 C has direct sums as well, and

thus is a k-linear category.
Henceforth assume that the pivotal category C is also finitely semisimple, and suppose

that we have some representation V :
∫

S1 C → Vec. We will now try to understand V and in
particular pin-down the data which V encodes.

The first observation we should make is that the inclusion functor J : C →
∫

S1 C allows us to
forget V down to a representation V ◦ J of C only. The hypothesis that C is finitely semisimple
permits application of Proposition 2.1.5, and hence produces an object X ∈ C so that V ◦ J is
naturally isomorphic to the hom-functor C(X → −). This means that we know completely how
V acts on morphisms in the image of J, i.e. morphisms f : S → T in

∫
S1 C which can be drawn

entirely in the red shaded region below:

f

S

T

, e.g.

g

X

Y

with g ∈ C(X → Y).

Namely, V(J( f : Y → Z)) is just the map C(X → Y) → C(X → Z) given by post-composition
with f . This already pins V down completely on a large class of morphisms in

∫
S1 C. The

key observation is that any morphism in
∫

S1 C can be isotoped so that “everything interesting
appears in the image of J”. Diagrammatically, we can always perform an isotopy taking a
potentially complicated morphism (with some particular labels on its interior vertices) to a
composite as shown below.
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XY

Z

W

isotopy
�������� X Y

Z W

factorisation
������������

X Y

Z W

U U∗YZ

Of course in practice the object U might have to be some tensor product of objects of C which
actually appear as labels in the original morphism Y → Z. Diagrammatically this corresponds
to bunching up multiple strings which pass around the back of the annulus (outside the shaded
red region above) into a single string. Thus we have established the following lemma.

Lemma 2.2.3 (Annular factorisation). Every morphism Y → Z factors as a composite of a morphism
Y → UYU∗ with a morphism UYU∗ → Z for some U ∈ C, where:

• the first morphism rY,U : Y → UYU∗ is precisely of the form

U U∗Y

Y , and

• the second morphism UYU∗ → Z is in the image of J.

Note that such a factorisation is clearly non-canonical.

As a consequence of this factorisation, our representation V is completely determined by
the representing object X together with knowledge of V(rY,Z) for every Y, Z ∈ C. The following
lemma reduces this information further.

Lemma 2.2.4. Let V :
∫

S1 C → Vec be any representation which when restricted to a representation of
C is represented by X ∈ C. Then given any morphism f : X → Y and object Z ∈ C we have

V(rY,Z)( f ) � Z f Z∗ ◦ V(rX,Z)(idX).

Diagrammatically,

V

©«

Z Z∗Y

Y

ª®®®®®®®®®¬
( f ) � Z f Z∗ ◦ V

©«

Z Z∗X

X

ª®®®®®®®®®¬
(idX).
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Proof. By an evident planar isotopy, we have the following equality of two composites of
morphisms in

∫
S1 C.

f
X

YZ Z∗

Z
Z∗

X

X �

f

X

Y

Z Z∗
Y

Y

Functoriality of V :
∫

S1 C → Vec then yields a commutative diagram

C(X → X) C(X → ZXZ∗)

C(X → Y) C(X → ZYZ∗)

V(J( f )) � V

©«
f

X

Y ª®®®®®®¬
V

©«
f

X

Y
Z

Z

Z∗

Z∗

ª®®®®®®¬
� V(J(Z f Z∗))

V

©«
Z Z∗X

X

ª®®®®®®¬

V

©«
Z Z∗Y

Y

ª®®®®®®¬ .

Since the vertical morphisms each come from a morphism in
∫

S1 C which lies in the image
of J : C →

∫
S1 C, representability of V implies that the left-side morphism V(J( f )) is merely

post-composition with f , and likewise for the right-side morphism.
Chasing the identity idX : C(X → X) around this diagram then gives

f ◦ idX � f idX V(rX,Z)(idX)

V(rY,Z)( f ) � Z f Z∗ ◦ V(rX,Z)(idX)

,

precisely as desired.

Lemma 2.2.4 is the key fact allowing us to calculate with arbitrary representations of
∫

S1 C.
As a corollary, we deduce that V :

∫
S1 C → Vec is completely determined by itsC-representing

object X, along with a morphism β̃Y : X → YXY∗ for every Y ∈ C, each β̃Y being obtained from
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evaluating V(rX,Y) : C(X → X) → V(X → YXY∗) at idX . Now observe that each morphism β̃Y

is canonically adjoint (via Frobenius reciprocity) to a morphism βY : XY → YX.

Proposition 2.2.5. The morphisms βY : XY → YX thus constructed assemble into a natural transfor-
mation.

Proof. Let f : Y → Z be any morphism in C. We need to verify commutativity of the square

XY YX

XZ ZX

βY

X f f X

βZ

.

Replacing both components β with their definitions in terms of the morphisms β̃, this square is
equivalent to the equality of string diagrams

β̃Z

f ∗
�

β̃Y

f

. (2.2.2)

Now, there is a planar isotopy between the following two composites of morphisms obtained
just by sliding the box labelled “ f ” around the annulus.

Z

f

Y∗X

Y Y∗X

X �

Y∗

f ∗

Z X

Z Z∗X

X

Thus we obtain another commuting diagram

C(X → X) C(X → YXY∗)

C(X → ZXZ∗) C(X → ZXY∗)

V(rX,Y)

V(rX,Z) (V◦J)( f XY∗)
(V◦J)(ZX f ∗)

,

and chasing the identity we find

V(rX,Z)(idX) � β̃Z idX V(rX,Y)(idX) � β̃Y

ZX f ∗ ◦ β̃Z � f XY∗ ◦ β̃Y

.
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The right-hand side of this last equation is verbatim the right-hand side of (2.2.2), so writing
ZX f ∗ ◦ β̃Z as a string diagram it suffices to check that

β̃Z

f ∗
�

β̃Z

f

,

and thus we are done by the evident isotopy, or concretely, by an elementary property of
duals.

It will be convenient for us to introduce the notation

X

XY Y∗

:�

X

XY Y∗

β̃Y
,

where it is meant that a single string joining Y and Y∗ passes underneath the vertical X to X
string. Similarly, we will define

X

XY

Y

:�

X Y

Y X

βY
�

X Y

XY

. (2.2.3)

At least for now, we must be careful when manipulating this notation within our diagrammatic
calculus. In particular, we must ensure that we do not perform moves which hold topologically,
but which we have not established as algebraic properties of the underlying morphisms. For
instance, it is the content of Proposition 2.2.5 that for any morphism f : Y → Z in C, there is an
equality of diagrams

X Y

Z X

f

�

X Y

Z X

f

, or equivalently

X

Z X Y∗

f
�

X

Z X Y∗

f ∗

,

and hence the box labelled “ f ” may in either case be pulled-through the crossing under
the X-to-X string. The following proposition establishes the similarly topologically intuitive
property that a tensor product can be braided under an X-to-X string all in one go, or each
object in the tensor product can be braided separately.
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Proposition 2.2.6. The natural transformation βY : XY → YX obeys the hexagon identity describing
a half-braiding for X.

Proof. There is again a planar isotopy witnessing an equality

Y Y∗
X

X

Y Y∗Z Z∗

�

Y
X

X

Z Z∗

Z
Z∗

X

X
,

and in turn functoriality of V gives rise to an equality V(rX,YZ) � V(rZXZ∗ ,Y)◦V(rX,Z). Evaluating
both sides at idX gives β̃YZ � V(rZXZ∗ ,Y)(β̃Z), and by Lemma 2.2.4 this further simplifies to
β̃YZ � Y β̃ZY∗ ◦ β̃Y . By unwrapping the definition of the components of β we are now done,
since3 this last equation establishes an equality of the diagrams

X

Y Z X Z∗ Y∗

�

X

Y Z X Z∗ Y∗

.

Proposition 2.2.7. Each component βY : XY → YX is an isomorphism.

Proof. Fixing any Y ∈ C, we construct an explicit inverse g : ZX → XZ of βZ : XZ → ZX by
the composite

g :�

XZ

Z∗ Z∗∗

X Z

φZ

φ−1
Z

.

3All one must do to obtain the conventional half-braiding relation is to bend the two rightmost strings in each
picture back down to the bottom using the evaluation map—the desired relation between the components of β is
then directly recovered.
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Drawing the diagram of composites of morphisms in
∫

S1 C

X

Z∗ Z∗∗

X

X

Z
Z∗

φ−1
Z

φZ

, (2.2.4)

we see that we have an isotopy to the much simpler morphism

X

X

Z
Z∗

,

where we have annihilated the boxes labelled φZ and φ−1
Z by bringing them together.

This isotopy thus asserts an equality of morphisms (again using Lemma 2.2.4)

X coevZ � (V ◦ J)(X coevZ)(idX)

�

(
(V ◦ J)((evZ∗ ◦φZZ∗)Xφ−1

Z Z∗) ◦ V(rZ∗XZ∗∗ ,Z) ◦ V(rX,Z∗)
)
(idX)

�

(
(V ◦ J)((evZ∗ ◦φZZ∗)Xφ−1

Z Z∗) ◦ V(rZ∗XZ∗∗ ,Z)
)
(β̃Z∗)

� (V ◦ J)((evZ∗ ◦φZZ∗)Xφ−1
Z Z∗)(Zβ̃Z∗Z∗ ◦ β̃Z)

� (evZ∗ ◦φZZ∗)Xφ−1
Z Z∗ ◦ Zβ̃Z∗Z∗ ◦ β̃Z ,

which in terms of an equality of string diagrams says

X

X Z Z∗

�

X

X Z Z∗

φ−1
ZφZ

. (2.2.5)
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Now, the composite g ◦ βZ may now be manipulated using (2.2.5) to obtain

X Z

φZ

φ−1
Z

X Z

'

X Z

φZ

φ−1
Z

X Z

'

X Z

X Z

'

X Z

X Z

,

i.e. that g is a post-inverse of βZ. By a slight modification of (2.2.4), attempting to mirror the
diagram over the vertical and adjusting the pivotal isomorphisms accordingly, we obtain the
relation

X

XZZ∗

φ−1
Z

�

X

XZZ∗

φ−1
Z
,

from which we derive that βZ ◦ g � idZX in the same way as well. Hence βZ and g are mutually
inverse, as desired.

We now collect together the observations which we have made thus far.

Proof of Proposition 2.2.1. For objects we have essentially described the necessary construction
already; first, given a representation V : Rep

∫
S1 C → Vec, restrict V to C and determine a

representing object X ∈ C. Then use Propositions 2.2.5, 2.2.6, and 2.2.7 to obtain a half-braiding
βY : XY → YX. Thus we have an object F(V) � (X, β) of Z(C).

Suppose that now that in addition to V :
∫

S1 C → Vec we have fixed a second representation
W , and an intertwiner η : V → W . Once again regard both V and W as representations of C
using the inclusion functor J and select representing objects X and Y for V and W respectively.
Then since η restricts to a morphism of representable functors C → Vec, Corollary 2.1.6.1 (a
direct corollary of the proof of the Yoneda lemma) yields that η is completely determined by
the value f : Y → X of the component ηX : C(X → X) → C(Y → X) on idX . Setting F(η) � f ,
functoriality of the result and faithfulness of this map is part of the content of the Corollary. It
just remains to verify that the morphism f � ηX(idX) : Y → X so extracted from the intertwiner
η is a actually a morphism in Z(C).

Let the morphisms β̃Z : X → ZXZ∗ and γ̃Z : Y → ZYZ∗ be those obtained by evaluating
V(rX,Z) and W(rY,Z) at idX and idY respectively, and similarly let βZ and γZ be obtained in the
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usual way (2.2.3) by Frobenius reciprocity. Naturality of η gives commutativity of the square

C(X → X) C(Y → X)

C(X → ZXZ∗) C(Y → ZXZ∗)

ηX

ηZXZ∗

V

©«
Z Z∗X

X

ª®®®®®®¬
W

©«
Z Z∗X

X

ª®®®®®®¬ (2.2.6)

and hence chasing the identity on X we obtain an equality

ηZXZ∗(β̃Z) � ηZXZ∗(V(rX,Z)(idX)) � W(rX,Z)(ηX(idX)) � W(rX,Z)( f ).

The right-hand side evaluates to W(rX,Z)( f ) � Z f Z∗ ◦ γ̃Z by Lemma 2.2.4, while the Yoneda
lemma Corollary 2.1.6.1 says that ηZXZ∗ is pre-composition with f � ηX(idX). Hence β̃Z ◦ f �

Z f Z∗◦ γ̃Z , which by Frobenius reciprocity exactly says that f defines a morphism (X, β) → (Y, γ)
in Z(C).

2.3 The relationship between Z(C) and Rep
∫

S1 C
Without requiring finite semisimplicity of C we still have a direct, though perhaps slightly
creative, means of obtaining representations of

∫
S1 C from objects of Z(C).

Proposition 2.3.1. There is a functor G : Z(C) → Repop
∫

S1 C.

Proof. We construct G by applying the adage “use every piece of data exactly once”. Fix an
object (X, β) of Z(C). To each object S of

∫
S1 C we will assign a quotient of the vector space(∫

S1 C
)
(J(X) → S) by an equivalence relation which we now describe. Namely, we identify

diagrams drawn in the annulus where an edge has been “pulled through” the puncture using
the half-braiding β. Diagrammatically, in any annular neighbourhood of the puncture we
declare

Y Y∗X

X
�

X
Y Y∗

X .

This partially defines a representation V :
∫

S1 C → Vec by specifying how V acts on the objects.
In order to extend V to an actual functor, given a morphism f : S → T in

∫
S1 C we produce a

linear map V(S) → V(T) just by gluing an annular diagram v ∈ V(S) inside the annular diagram
defined by f using the embedding Proposition 2.2.2, and interpreting the result in V(T). It is
then immediate from our construction that V sends the identity to the identity (inserting the
identity diagram certainly gives the identity linear map), and that the functor so obtained is
actually functorial.

This only defines the functor G on the objects of Z(C). Now given a morphism f : (X, β) →
(Y, γ), we need to specify the components ηT : G(Y, γ)(T) → G(X, β)(T) ∈ Vec of a natural
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transformation in Rep
∫

S1 C (where T varies over the objects of
∫

S1 C). We do this just given a
diagram v ∈ G(Y, γ) in the annulus with inner boundary J(Y) and outer boundary T by gluing
the outer boundary of the annular diagram corresponding to J( f ) along the inner boundary of
the annular diagram v; diagrammatically

Y

Z

W

7−→

Z

W

f

X

Y

.

This certainly defines a linear map
(∫

S1 C
)
(J(Y) → T) →

(∫
S1 C

)
(J(X) → T), but a priori it need

not descend to a linear map V(Y)(T) → V(X)(T) in the quotient. In diagrammatic terms, a
string in v may be pulled over the annular hole using γ, then J( f ) may be glued on the inside,
or J( f ) may be glued first and then β may be used to pull the string over the annular hole.
Fortunately, the fact that f : Y → X is a morphism in Z(C) precisely asserts that the two
diagrams so obtained are equal after a local replacement.

Naturality of the components ηT thus constructed amounts to demanding that the operation
of gluing any morphism g : T → S along the outer boundary of any v ∈ G(Y, γ), and the
operation of gluing the morphism J( f ) : J(X) → J(Y) along the inner boundary of that same
v ∈ G(Y, γ) commute. This is a manifest property of our construction, and thus the proof is
complete.

Remark 2.3.2. We will shortly see that (as expected) when G(Y, γ) is restricted to a representation
of C, the resulting functor is represented by Y. Thus algebraically each map ηT � G( f : (X, β) →
(Y, γ)) has a particularly simple description; every g ∈ G(Y, γ)(T) is sent to g ◦ J( f )—just
pre-composition with J( f ). Theorem 2.1.6 (the Yoneda lemma) says that this rule automatically
defines a natural transformation G(Y, γ) → G(X, β) of representations of C.

Note however that this does not make our explicit argument below redundant, since we
desire a natural transformation of representations of all of

∫
S1 C.

Proposition 2.3.3. If End(1) � k then the functor J is faithful.

Proof. Fix objects X,Y ∈
∫

S1 C. In order to reduce to the case of Theorem 1.4.6, we define an
operation cut on morphisms f : X → Y induced by cutting S1 × I along a radial arc determined
by a distinguished point • ∈ S1. For instance, when X and Y are themselves in the image of J
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we would have

f �
X

Y

W

cut7−→

cut(Y)

cut(X)

W ∗W .

Note that in order for this to make sense we must fix a point • which does not coincide with
a labelled point of X or Y. As shown above, for each f : X → Y the map cut produces an
object W ∈

∫
I C along with a rectangular string diagram with bottom side labelled by cut(X),

top side labelled by cut(Y), and the left and right sides labelled by W and W ∗ respectively
(here the dual W ∗ has the same distinguished points of W with the left duals of the original
labels being taken). Of course it might be the case that no string in diagram f intersected
the cutting line, in which case we take W � 1. We can then form the free vector space
VX,Y,W on rectangular string diagrams of this kind. On each such vector space we impose a
relation ∼dia which identifies isotopic rectangular diagrams, and diagrams obtained by local
replacement or linearity relations (in the sense of Section 1.4) in the interior of each rectangle.
The result is a quotient QX,Y,W � VX,Y,W/∼dia, for which we consequently assemble the direct
sum QX,Y �

⊕
W∈

∫
I C

QX,Y,W . We assert that after imposing a second relation ∼slide on QX,Y , the
quotient HX,Y � (

⊕
W VX,Y,W/∼dia)/∼slide exactly recovers the homset

(∫
S1 C

)
(X → Y).

The second relation ∼slide is generated by sliding moves of the form depicted below (with
the induced C-decorations on the red lines of the left and right diagrams corresponding to the
objects Z and W of

∫
S1 C respectively).

cut(Y)

cut(X)

W ∗W
Z

∼slide

cut(Y′)

cut(X′)

Z∗Z
W

(2.3.1)
The relation∼slide exists to reflect that fact that our rectangular string diagrams should be thought
of annuli which have been cut up. Critically, the relation ∼dia does not mix the summands VX,Y,W

(by definition), while the relation ∼slide does. Since it is always possible to factor an ambient
isotopy into a finite composite of ambient isotopies which modify a single ε-neighbourhood at
each stage (for instance, see Lemma B.0.1 of [31]), we see that the quotient construction HX,Y

exactly recovers
(∫

S1 C
)
(X → Y).

It now suffices to show that the inclusion of any ordinary morphism g : U → V in C into
the VX,Y,1 summand of QX,Y as a rectangular diagram, and then passing to the quotient HX,Y ,
is an injective map. It is the content of Theorem 1.4.6 that this map is injective after taking
the first quotient ∼dia, but before taking the second. But now observe that the relation ∼slide is
transitively closed; a chain of sliding moves between any two rectangular diagrams can always
be accomplished by a single move. This means that it in turn suffices to verify that if two classes
of diagrams D and D′ in VX,Y,1/∼dia are related by a single sliding move then they are actually
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the same class. If there was such a sliding move, then the (right) interior boundary of the red
region of (2.3.1) would also be labelled by just the unit 1. But now by the hypothesis End(1) � k,
the diagram inscribed within the red region must be (possibly a scalar multiple of) an empty
diagram. A pair of representatives of D and D′ are therefore isotopic, and hence D � D′. This
completes the proof.

So that Proposition 2.3.3 applies, we will assume that End(1) � k from now on.
We are almost ready to prove the main theorem of this section. The following lone and

essentially knot-theoretic obstacle remains to be overcome.

Theorem 2.3.4. Let (X, β) ∈ Z(C). Then for each Z ∈ C the inclusion C(X → Z) → G(X, β)(Z)
(via J, and then passing to the quotient) is a linear isomorphism.

Moreover, under this isomorphism the natural transformation G( f ) for any f : (X, β) → (Y, γ) just
becomes precomposition with f on every homset.

The proof is deferred until the end of this section. Note that it is certainly the case that for
each representative v of an equivalence class in G(X, β)(Z) we can construct a morphism in
C(X → Z). Indeed, after isotoping v and locally replacing disks to obtain the factorised form of
Lemma 2.2.3 as we have done now many times, we need only pull a single string across the
annular puncture using the quotient relation defining G(X, β)(Z). This yields a morphism in
the image of the inclusion J, hence in C(X → Z) (and thus establishes that J is surjective in the
quotient). The second part of Theorem 2.3.4 is also then immediately clear. The factorisation of
Lemma 2.2.3 being highly non-canonical, the only question is whether after arbitrary isotopy
and local replacement and subsequent factorisation, the same morphism in C(X → Z) is
always obtained; that is, whether J has nontrivial kernel in the quotient. This is the content
of the deferred proof, and as expected it uses that the half-braidings in Drinfeld centers are
natural, satisfy the half-braiding hexagon, and are isomorphisms (corresponding respectively to
Propositions 2.2.5, 2.2.6, and 2.2.7) all in a critical way. Note that by Theorem 2.3.4 the functor
G is faithful, since we can recover f : X → Y by evaluating the component ηY at idY ; the result
will be the image of f under the faithful functor J.

Theorem 2.3.5. Let C be finitely semisimple so that the functor F from Proposition 2.2.1 exists, and
suppose End(1) � k. Then F and G together give an equivalence of the categories Z(C) and Repop

∫
S1 C.

Proof. We will actually show that we can slightly modify F and G into functors respectively
from and to a category Dop equivalent to Repop

∫
S1 C, so that F and G witness an isomorphism

between Dop and Z(C); the claim will then follow immediately.
The point of this technical manoeuvring is to avoid making non-canonical choices. Namely,

our definition of the functor F : Repop
∫

S1 C → Z(C) is slightly inconvenient, requiring an
arbitrary choice4 of representing object X ∈ C for every representation V :

∫
S1 C → Vec. This is

equivalent to fixing an isomorphism from each such representation V to another representation
V′ :

∫
S1 C → Vec and object X ∈ C so that V′ restricts on C to the literal hom-functor C(X → −).

That is, V′(Y) is equal to C(X → Y) on-the-nose, and V′(J( f : Y → Z)) is literally post-
composition with f . Obviously, the choice of such a representation V′ and the isomorphism
thereto is non-canonical.

In order to not have to deal directly with these isomorphisms, observe that the category
Rep

∫
S1 C is equivalent to a category D consisting of the functors

∫
S1 C → Vec which restrict

on C to hom-functors, and thinking5 of F as a functor Dop → Z(C) in this situation there is
a canonical choice F(V) � (X, β) of both the object X and natural isomorphism β. Similarly,

4Really, to each such family of choices is associated a particular functor F : Repop ∫
S1 C → Z(C).

5Of course, technically we are actually now defining a new functor—though very similar—with the same name F.
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via Theorem 2.3.4 we can construct a functor G : Z(C) → Dop such that for each Z ∈ C the
vector space G(X, β)(Z) is literally the homset C(X → Z), and so that G( f : (X, β) → (Y, γ)) is
just precomposition with f .

This all ensures that starting with an object (X, β) ∈ Z(C), for (Y, γ) :� FG(X, β) we have Y �

X and γZ � G(X, β)(idX) � βZ on-the-nose. Similarly, let V :
∫

S1 C → Vec be a representation
restricting to a hom-functor represented by X ∈ C. Then we have F(V) � (X, β) with β some
half-braiding for X, and for any Y ∈ C we have GF(V)(Y) � G(X, β)(Y) � C(X → Y) � V(Y) an
equality.

Finally, for any f : Y → Z we must check that GF(V)( f ) � V( f ), and this is a non-
trivial calculation. First, apply Lemma 2.2.3 in order to factor f as f � J(g) ◦ rY,W for some
morphism g : WYW ∗ → Z. Define W � GF(V) to simplify the notation. Now by definition,
W( f ) � G(X, β)( f ) sends a morphism h : X → Y to f ◦ J(h) � J(g) ◦ rY,W ◦ J(h); composition
here is being performed in

∫
S1 C using representatives and then descending to the quotient, and

we continue this convention in the sequel. The isotopy of the proof of Lemma 2.2.4 then yields
an equality

W( f )(h) � J(g) ◦ J(WhW ∗) ◦ rX,W .

We can then write rX,W � J(β̃W ) using quotient defining W(X), and so

W( f )(h) � J(g ◦ WhW ∗ ◦ β̃W ).

Now unfolding the definition of β̃W , applying Lemma 2.2.4, and using functoriality of V we
obtain

g ◦ WhW ∗ ◦ β̃W � g ◦
(
WhW ∗ ◦ V(rX,W )(idX)

)
� g ◦ V(rY,W )(h)
� V(J(g))

(
V(rY,W )(h)

)
� V(J(g) ◦ rY,W )(h)
� V( f )(h). (2.3.2)

Hence W( f ) � V( f ) identically, as desired.
It remains to show that F and G are mutually inverse on morphisms. First fix some

f : (X, β) → (Y, γ) in Z(C). Then unwinding definitions we have FG( f ) � G( f )Y(idY), and we
observed above that G( f )Y is just pre-composition with f . Consequently, FG( f ) � f . Now
fix some natural transformation η : V → W of representations of

∫
S1 C which restrict on C to

hom-functors represented by X and Y respectively. Then for any Z ∈ C and g : X → Z we can
compute GF(η) componentwise by

(GF(η))Z(g) � G(ηX(idX))Z(g) � g ◦ ηX(idX) � ηZ(g)

with the last equality following from the Yoneda lemma. This shows that GF(η) � η and
completes the proof.

In general Z(C) and Repop
∫

S1 C need not be the same. For example, when C is not finitely
semisimple there may be exotic representations of

∫
S1 C which are not representable, and of

course when C is not pivotal the annular category does not even make sense.
In the previous section we determined basic properties of objects of Rep

∫
S1 C, at least when

C is finitely semisimple. Theorem 2.3.5 together with the results of the next section show that
those properties are all of the important ones; the functors F and G then explain in extremely
concrete terms how to pass between the two viewpoints of the same data.
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Finally, we tie up the loose-end. We will deduce Theorem 2.3.4 by appeal to the following
knot-theoretic result. We do not prove it carefully, but we at least explain the general method by
which results of this kind are obtained [37]. Consider two identical disks embedded in 3-space,
one overlaid above the other so that they coincide when viewed from above. On the “upper
disk” we will inscribe a fixed, distinguished line, and on the bottom disk we will allow any
unlabelled diagram with labels in C to be drawn. A sample configuration to have in mind is
depicted below.

Z

W

or, from above

Z

W

.

As depicted, when viewed from above we obtain a 	-diagram; a knot diagram with crossings
wherever the distinguished line passes over the labelled diagram inscribed below. We will
prohibit 	-diagrams with “singular” points, with a diagram string intersecting the distinguished
line tangentially, or a labelled vertex lying exactly on the distinguished line. It is clear that
isotopies of labelled string diagrams in the disk give rise to a sensible notion of isotopy of

	-diagrams when viewed from above (though the induced isotopy of 	-diagrams might pass
through singular points).

Theorem 2.3.6. In the geometrical situation just described suppose there is a function ψ defined on the
set of 	-diagrams (obtained by viewing the two disks from above). Then ψ is an invariant of the underlying
labelled string diagram exactly if ψ is invariant under isotopy of 	-diagrams, and local applications of

1. the Reidemeister 2 move, pulling loops under and through each side of the distinguished line, and

2. moving a labelled vertex across under the distinguished line.

Proof sketch. This is a Reidemeister type theorem, and thus may be established via the following
general programme. First, we extend the space of diagrams to include those which can innocently
arise out of viewing an isotopy of knots as an isotopy of 	-diagrams, but nonetheless ψ does not
take values on. We do this by labelling each unacceptable point of a knot diagram which we
disallowed (ψ does not accept) a singular point with some multiplicity. In our case by definition
we cannot have a string meeting the distinguished line tangentially, and we cannot have a
vertex hidden under the distinguished line. On their own we declare both such points to have
multiplicity 1. It can also happen that both of these possibilities simultaneously occur at the
same point, and we declare in this situation to have a singular point of multiplicity 2. (In our
case, since we only allow ambient isotopy to begin with, we do not need to consider notions of
higher multiplicity crossings as one would when defining a typical knot invariant, for example.)

Next we consider a filtration

F0 ↪→ F1 ↪→ F2 ↪→ · · ·

of the infinite-dimensional manifold F of all 	-diagrams, with the subset Fi consisting of those

	-diagrams which have sums of multiplicities of singular points at most i. Then we establish
separately that



44 Representations of the annular category

a) There exists some k ≥ 0 such that any string diagram isotopy rel boundary inducing an
isotopy of 	-diagrams may be modified to give an isotopy through only Fk . That is, if any
singular points of multiplicity greater than k arise, we can arrange their creation can be
avoided by modifying the isotopy.

b) The functionψ is invariant under all possible ways of resolving all of all kinds of multiplicity
≤ k singularities which can occur. The resulting diagrammatic equations are the associated
Reidemeister moves for domain in which we are working.

In our case it is sufficient to set k � 1. To see this, observe the following. First, since only finitely
many singular points can arise during the entire isotopy, we can pick a ε small enough that
whenever multiple singularities do simultaneously occur, ε-balls about all of the singular points
never intersect. Recall once again that every ambient isotopy of the disk can be refined into a
finite composite of ambient isotopies where only ε-balls are modified at each stage [31], and
we do this. Consequently we dispatch with any diagram of singular multiplicity greater than
one, so long as that diagram is singular due to multiple multiplicity 1 singular points present
on the distinguished line simultaneously. Finally, it remains to deal with the case of a single
multiplicity 2 singularity, but this is straightforward; we just slide a labelled vertex under the
distinguished line before we resolve the Reidemeister 2-type crossing by pulling the remaining
loop through.

Hence we obtain the desired isotopy though diagrams in F1 only. The value of ψ is constant
on isotopic diagrams by assumption, and the other hypotheses of the theorem assert that ψ
is invariant as the isotopy passes through any (multiplicity one) singular diagram. The claim
follows.

Proof of Theorem 2.3.4. By the discussion following the statement of the theorem we just need
to show that the inclusion C(X → Z) → G(X, β)(Z) induced by J is injective in the quotient.
Let η be an isotopy between diagrams f and g, each representing a vector in G(X, β)(Z). Now
observe that we can embed the annulus into itself via the mushroom-ification map

X

Z

...

7−→
X

Z

...

.

When we perform this re-embedding, we are careful to preserve a small neighbourhood of the
inner distinguished point labelled by X, in order that the annulus crosses under itself only
under the single string originating at X.

The resulting re-embeddings of f and g evidently factor through the inclusion of a rectangle
into the annulus, and we denote the associated diagrams in the rectangle by f̃ and g̃ respectively.
For now we consider f̃ and g̃ only topologically, since they may have intersecting strings and
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hence not make sense as actual labelled string diagrams. Nonetheless it is easy to then see that
the isotopy η gives rise to an isotopy η̃ between f̃ and g̃.

The point of all of this is that we can think of the string connecting to X on the boundary as
a distinguished line in a disk which turns the respective regions in f̃ and g̃ where the annulus
crosses under itself into the 	-diagrams of Theorem 2.3.6. Moreover, there is a natural evaluation
map (eval ◦ rectify of Section 1.4) on such diagrams taking values in ordinary morphisms
C(X → Z) in the category C; the only problems can occur when there is a singular point
in the sense of Theorem 2.3.6 (which is perfectly acceptable), or when a string intersects the
distinguished line transversely. We handle the latter situation by (unambiguously) resolving
transverse intersections using the braiding β with which (X, β) ∈ Z(C) is equipped.

It is sufficient to show that evaluation of these 	-diagrams is an isotopy invariant of the
underlying labelled string diagram, since the evaluation map itself is an invariant of isotopy
and local replacement in disks (by Theorem 1.4.6). Hence by Theorem 2.3.6 it remains to show
that evaluation is invariant under the Reidemeister 2 move and moving a vertex under the
distinguished line. The former condition is exactly the content of Proposition 2.2.7, and the
latter is verified by performing the diagrammatic replacement

f id f id .

Here we have replaced an arbitrary vertex labelled with a morphism f with three vertices; a
central vertex of valance 2 still labelled by f , flanked on either side by a vertex labelled with
id : X1 ⊗ · · · Xn → X1 ⊗ · · · Xn—which just bundles the strings together. Proposition 2.2.5
asserts that valence 2 labelled vertices may be freely slid under the distinguished line, and
Proposition 2.2.6 asserts (by induction) that the identities may pass under as well. This verifies
the second required move, and so completes the proof.

2.4 A braided monoidal structure on Rep
∫

S1 C

We saw in Chapter 1 that the Drinfeld center of any monoidal category is naturally a braided
monoidal category. In fact, representations of the annular category of C also posses a natural
braided monoidal structure. In this section we will see that when C is finitely semisimple the
equivalence of the previous section extends to a braided monoidal equivalence.

Thus, let V,W ∈ Rep
∫

S1 C be representations. For each Z ∈
∫

S1
C we declare (V ⊗ W)(Z) to
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be a quotient of the free k-vector space on all diagrams of the form

v w

X Y

Z

with v ∈ V(X),
w ∈ W(Y) . (2.4.1)

That is, diagrams in a fixed disk with two interior disks removed (a left and right puncture), so
that

• the outer boundary is labelled by Z,

• the boundary of each inner puncture is labelled with arbitrary element of
∫

S1 C, and

• the left puncture with boundary X is labelled by a vector v ∈ V(X), and the right puncture
is labelled by a vector w ∈ W(Y) similarly.

We already have a good theory of diagrams up to isotopy and local replacement drawn in
manifolds such as a doubly-punctured disk, so we just impose one further relation to ensure
compatibility with the vectors labelling each puncture. To describe the relation, note that given
any annular neighbourhood f : X → Y of a puncture labelled with the vector v in V(X) we
obtain another vector v′ � V( f )(v) in V(Y). We declare that we obtain an equal diagram by
deleting the annular neighbourhood S and labelling the resulting puncture with the vector
v′ (here and henceforth we extend such identifications linearly in the free vector space on all
diagrams).

It is easy to then see that (V ⊗ W)(Z) inherits the structure of a vector space; multiplying
a puncture by a constant can be freely moved to morphism connected to that puncture by a
string. We then define (V ⊗W)( f : X → Y) to just be the gluing of the outer X-boundary of each
diagram S ∈ (V ⊗ W)(X) to the inner boundary of the annulus f , with the result interpreted in
(V ⊗ W)(Y). This construction yields a linear map, and hence a linear bifunctor ⊗ on

∫
S1 C is

defined on the morphisms.
Now given two morphisms η : V → T and µ : W → U their tensor product is for each

Z ∈
∫

S1 C a morphism (η ⊗ µ)Z : (V ⊗ W)(X) → (T ⊗ U)(Z) which is natural in Z. We obtain
such a map by sending diagrams of the form (2.4.1) to the diagram obtained by replacing the
label v ∈ V(X) with η(v) and the label w ∈ W(Y) with µ(w). Since V ⊗ W and T ⊗ U both
send morphisms f : Z → Z′ to the linear map which glues f around the outer boundaries of
diagrams, we see directly that the family of morphisms (η ⊗ µ)Z is natural. This completes the
definition of the product ⊗, since functoriality of the product is similarly clear.6

The monoidal unit for ⊗ is just the representation of
∫

S1 C which for each Z ∈
∫

S1 C reports
the vector space of diagrams in the disk (not annulus) with boundary Z—and with the action of
morphisms defined in the usual way by gluing to the boundary of disk.

We also need an associator and unitors for the product ⊗, which we build by an appeal to
some general machinery. Observe that the tensor product we have defined on representations

6Note that the monoidal product we have described is not the same as the product induced “pointwise” by the
symmetric monoidal structure on Vec.
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of the annular category naturally extends to a 3-fold product of three representations V,W,U
just considering diagrams

Z

v w u

X Y Z

with
v ∈ V(X),
w ∈ W(Y),
u ∈ U(Z)

and again having morphisms in
∫

S1 C act by gluing around the outer boundary of any diagram.

Moreover it is easy to see that there is an analogous product ⊗n :
(
Rep

∫
S1 C

) n
→ Rep

∫
S1 C for

all n ≥ 0.7 To reduce notational clutter we will write n-fold products with square brackets, so
that [] :� 1, [V] :� V , [V,W] :� V ⊗ W , the 3-fold product is denoted [V,W,U], and so on.

The key point is that each of these products is compatible, in that there is an isomorphism
flatten from each product of products, e.g.

[[V1], [V2 ,V3 ,V4], [V5 ,V6]] to a single product [V1 ,V2 ,V3 ,V4 ,V5 ,V6]

which deletes brackets. In particular, flatten gives a composite of isomorphisms

αV1 ,V2 ,V3 : [[V1 ,V2],V3] [V1 ,V2 ,V3] [V1 , [V2 ,V3]]flatten
∼

flatten
∼ (2.4.2)

which we declare to be a component of the associator of ⊗ (recall that a bracket of two represen-
tations is just the product ⊗). In our case these associators are schematically isomorphisms

∼−−−−−−→ ∼−−−−−−→

between the vector spaces of diagrams with the indicated shape.
We claim that so long as flatten is natural in an appropriate generalised sense the isomor-

phisms (2.4.2) assemble into a natural transformation α which obeys the pentagon associativity
constraint, and hence we obtain the desired associator. The notion of generalised naturality
we mean is just that if f1 , . . . , fn are morphisms of representations arranged in some product
of products, then the resulting morphism commutes with flatten after deleting brackets. For
example, we require

flatten ◦ [[ f1], [ f2 , f3 , f4], [ f5], [ f6 , f7]] � [ f1 , f2 , f3 , f4 , f5 , f6 , f7] ◦ flatten.

Now observe that to show α actually is an associator, schematically we must just verify that the

7The underlying structure here is essentially that we have an E1-algebra in Cat (the 2-category of categories); [13]
explains the monoidal (∞, 1)-category situation this way. The case of symmetric monoidal categories is explicitly
described in [6].
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boundary of the following diagram8 is commutative.

The outermost triangular faces commute by the definition of the associator to begin with. Each
remaining (quadrilateral) face then commutes by the generalised naturality of flatten applied to
flatten itself, so the boundary of the diagram is commutative as desired.

Suppose now that there is another map strip which for each n-fold product e.g. [V1 , 1, 1,V2 , 1]
gives an isomorphism to the same product with all of the copies of the tensor unit deleted, i.e.
in this case [V1 ,V2], and is again natural in our generalised sense in all of the entries which are
not the tensor unit. Then we automatically have natural isomorphisms

lV : [1,V] [V] � V
strip
∼

rV : [V, 1] [V] � V .
strip
∼

We claim that if strip and flatten always commute9, then these maps satisfy the triangular
identity for unitors. This follows by commutativity of the boundary of the following schematic

8Note that this diagram makes sense for any bracket product by interpreting the punctured disks as brackets.
9It is easy to see that the source and target of these maps is such that this statement makes sense.
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diagram

flatten

r⊗1

α

flatten

1⊗l

strip

where punctures labelled by the tensor unit are shaded. The upper triangle commutes by the
definition of the associator, and the right and left triangles are commutativity squares for strip
and flatten which have been collapsed (one side is an equality in each case).

Proposition 2.4.1. The product ⊗ on
∫

S1 C has natural flatten and strip maps which commute, and
hence

∫
S1 C is a monoidal category.

Proof. In order to avoid introducing new notation so that we can speak in full generality, we just
illustrate the special case of a product (V ⊗W) ⊗U � [[V,W],U] and assert that the general case
is completely analogous. Now, a representative of any fixed t ∈ ((V ⊗ W) ⊗ U)(Z) is a diagram
in a doubly punctured disk with the boundaries of the inner punctures labelled by X,Y ∈

∫
S1 C,

and respectively s ∈ (V ⊗ W)(X), and u ∈ U(Y). In turn s ∈ (V ⊗ W)(X) is represented by
another diagram in a doubly punctured disk with again X1 ,X2 ∈

∫
S1 C, and labels v ∈ V(X1)

and w ∈ W(X2). By inserting the latter diagram into the former, we obtain a diagram t′ of the
form (with some string diagram in the interior)

v w u

Z

X1 X2 Y

which lies in [V,W,U](Z). We claim that this construction gives a well-defined map sending
any t ∈ ((V ⊗ W) ⊗ U)(Z) to the corresponding in t′ ∈ [V,W,U](Z). This follows since in
((V ⊗ W) ⊗ U)(Z) we imposed the relation that we can “collapse” annular neighbourhoods
of any puncture into the puncture. Consequently any isotopy or local replacement move of
a representative of a diagram in ((V ⊗ W) ⊗ U)(Z) gives rise to a corresponding move of the
corresponding diagram in [V,W,U](Z), and vice versa. We see directly that the morphisms
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flatten which we obtain in full generality from this construction are natural in morphisms of
representations, just by unravelling our definition of the tensor product of morphisms.

The definition of strip is similarly straightforward; suppose that some number of copies
of 1 occurs in an n-fold product T � [V1 , . . . ,Vn] and T′ is the result of deleting every copy
of 1 in the product. In addition let v be a diagram representing a vector in the value of T on
some Z ∈

∫
S1 C. Then again the fact that we can collapse disk neighbourhoods of punctures of

v means that we can replace v with a representative where each puncture corresponding to
1 is labelled by the empty diagram in the disk! Consequently we obtain a way to construct a
diagram representing a vector in T′(Z) just by “filling in” each of the punctures labelled with 1
with an empty disk. Naturality is evident for the same reason as for flatten (morally, morphisms
of non-unit objects act “far away” from where strip modifies the diagrams).

Finally, commutativity of strip and flatten is just the statement that we can fill in punctures
associated to the unit 1 before and after flattening and obtain the same diagram; and this is
manifest.

Proposition 2.4.2. The functor G is monoidal.

Proof. First, in order to equip G with a monoidal structure we must provide a morphism
K(X,β),(Y,γ) : G(X, β) ⊗ G(Y, γ) → G((X, β) ⊗ (Y, γ)). Recall that for any Z ∈ C vectors in
(G(X, β) ⊗ G(Y, γ))(Z) are represented by diagrams of the form

X Y

S T

Z

(2.4.3)

with v ∈ G(X, β)(S) and w ∈ G(Y, γ)(T) for some S, T ∈ C. In particular recall that by the
definition of G, in both of the inner annuli it is permissible to pull a string over the puncture
via the respective half-braiding β or γ. On the other hand, vectors in G((X, β) ⊗ (Y, γ))(Z) are
represented by diagrams of the form

X Y

Z

. (2.4.4)

We build a linear map L : (G(X, β) ⊗ G(Y, γ))(Z) → G((X, β) ⊗ (Y, γ))(Z) in two steps. First, we
begin with any diagram of the form (2.4.3) and inscribe a line connecting the two punctures
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(depicted below in dotted red). We then pull any strings which intersect this line over the
right-hand puncture. For example beginning with the diagram (2.4.3) we would obtain

X Y

S T

Z

.

As a second step we can then remove the (dotted red) line connecting the punctures in order to
obtain a single annular diagram representing a morphism XY → Z in

∫
S1 C, exactly of the form

(2.4.4):

X Y

S T

Z

.

This construction gives a well defined linear map, because the braiding of (X, β) ⊗ (Y, γ) exactly
corresponds to using β, then γ. Hence pulling a string over the X-puncture, then the Y-puncture,
then coalescing the punctures gives the same result as coalescing the punctures and then
pulling a string over the single remaining puncture. Moreover L is obviously surjective; any
morphism f : X ⊗ Y → Z in

∫
S1 C can have its inner puncture pulled apart and separated

into two punctures (exactly undoing the “second step” used to construct L) in order to find an
element of (G(X, β) ⊗ G(Y, γ))(Z) mapping to f .

To show that L is injective we appeal to the natural generalisation of Theorem 2.3.6 which
holds for 2 distinguished lines. The only required modification to the proof amounts to the
observation that isotopies of diagrams with two distinguished lines can be arranged so that
there is only ever a singular point at one of the distinguished lines at any point in time. Doubly-
punctured disks may be similarly “mushroom-ified” (self-embedded) in the obvious way, so as a
result injectivity of L is again implied by Propositions 2.2.5, 2.2.6, and 2.2.7 together. Naturality
of the resulting components K(X,β),(Y,γ) of the tensorator is just the statement that the same
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diagram is obtained if; any pair of morphisms f : X → Z and g : Y → W are glued along the
punctures of a doubly punctured disk and then are coalesced together, or instead the punctures
are coalesced and the single annulus J( f ⊗ g) is glued inside the single remaining puncture.

We now translate the associativity constraint for the tensorator K(X,β),(Y,γ) into the language
of diagrams. After applying flatten and traversing each arm of the associativity constraint
axiom, we just have to verify equality of the pair of diagrams on the last row of Figure 2.2.

Figure 2.2: A diagrammatic representation of each side of the associativity constraint hexagon
for K.

Superficially they are equal, but they differ by the encircled dashed regions which represent
places where multiple string(s) have been braided over other(s) all in one go. Their equality is
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geometrically evident if we can show that both of the identities

X Y

�

X Y

�

X Y

hold in our diagrammatic calculus given objects (X, β) and (Y, γ) of Z(C). Thus we are done,
since the first equality follows from just the definition of the half-braiding on a tensor product
in Z(C), and the second is an application of Proposition 2.2.6.

We have already seen above that the monoidal unit of Rep
∫

S1 C assigns to each Z ∈
∫

S1 C the
vector space of diagrams drawn in the disk with boundary Z. In turn, the identitor κ : 1→ G(1)
is just the map which given any disk diagram makes a puncture somewhere away from a string,
subject to the relation that strings may freely pass over the puncture!

Finally, we verify the identity constraints. Consider a doubly punctured disk of the form
(2.4.1) representing a vector in (1 ⊗ V)(Z) for Z ∈

∫
S1 C. Then in order to obtain a representative

of a vector in V(Z) we could choose a representing vector for the left puncture which is an empty
disk, and then fill the left puncture in with this disk (this is the left unitor). Alternatively, we
could coalesce the punctures as usual (the tensorator). The left identity constraint says that these
two results must be equal, and it holds by unfolding the definition of the braiding on the tensor
product 1 ⊗ (X, β) in Z(C). The right identity constraint is even simpler (the asymmetry arises
because in the definition of ⊗ when coalescing we only pull strings over the right puncture and
never the left), so this completes the proof.

Corollary 2.4.2.1. When C is finitely semisimple and the functor F exists, it is monoidal.

Proof. Recall that F is only defined up to the structure of an equivalence on the inclusion
E : D ↪→ Rep

∫
S1 C. Let us arrange that E is part of an adjoint equivalence, so that F and

G are part of an adjoint equivalence. Then F acquires a monoidal structure from G as in
Proposition 1.2.16.

A braiding on Rep
∫

S1 C may be similarly defined diagrammatically. We define an isomor-
phism (bV,W )Z : (V ⊗ W)(Z) → (W ⊗ V)(Z) for each Z ∈

∫
S1 C and diagram v ∈ (V ⊗ W)(Z)

by “sticking our fingers in both punctures and rotating clockwise one-half revolution”. For
example, through two quarter revolutions the diagram (2.4.1) would become

v w

X Y

Z

v

w

X

Y

Z

vw

XY

Z

This construction defines a linear isomorphism for each Z, with inverse “inserting your fingers
back into the holes and rotating counterclockwise” (i.e. playing the isotopy in reverse). Moreover
naturality of bV,W follows by inspection, just because isotoping punctures around and then
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replacing their vector labels commutes with replacing vector labels and then isotoping the
punctures.

The easiest way to verify the hexagon axioms for b is to apply the flatten map to each vertex
of each axiom, so we can view each as a statement about isotopies in triply punctured disks
(with the punctures respectively labelled by a vector from a fixed representation). Viewed this
way, the two arms of each hexagon give different isotopies of a triply punctured disk which
each have the same starting and ending locations for the labelled punctures. However, string
diagrams inscribed on each punctured disk might have been distorted differently—though there
is clearly an isotopy which rearranges the punctures and takes one such distortion to the other
distortion of the same diagram (we just compose the isotopy for one of the arms of the hexagon
with reverse of the other.). The question is just whether there is always an isotopy between these
two distorted diagrams which fixes the punctures in place (i.e. rel boundary), and this is clear
by inspection.

Proposition 2.4.3. The functor G is braided.

Proof. Let us first compute the result of braiding G(X, β) past G(Y, γ), and the coalescing the
two together using the tensorator of G. By the relation permitting pulling-across the annulus,
every diagram in (G(X, β) ⊗ G(Y, γ))(Z) is represented by a diagram of the leftmost form below,
whereupon braiding then coalescing we obtain a diagram of the second form. In particular, the
sole interior vertex retains the same label.

X Y

Z

Y X

Z

XY

Z

The claim that G is braided is the assertion that this last diagram is equal to coalescing without
braiding and then gluing J(βY) along the inside of the resulting diagram. This holds by
inspection.

Corollary 2.4.3.1. When C is finitely semisimple and the functor F exists, it is braided.

Proof. Again use Proposition 1.2.16.

Assembling all of the results of this chapter together, we have established the following
theorem.

Theorem 2.4.4. Let C be finitely semisimple with End(1) � k. Then Z(C) and Repop
∫

S1 C are
equivalent as braided monoidal categories.

Proof. Combine Theorem 2.3.5, Proposition 2.4.3, and Corollary 2.4.3.1; the functors F and G
witness a braided monoidal equivalence.



Chapter 3

Balanced tensor products of
(bi)module categories

Given a pair of module categories MC and NC , under suitable hypotheses we can take their
Deligne product M �

C
N (introduced in Definition 1.3.11). On the other hand, we can form a

category of diagrams drawn in the 2-manifold

C

MC NC

(3.0.1)

and consider representations of this category. Similarly, when MD C and NC D are bimodule
categories we have a Deligne product M �

C⊗Dmop
N (after taking flips). When C and D are

pivotal there is now an associated category of diagrams of the form

C

D

MD C NC D . (3.0.2)

In this chapter we prove equivalence theorems between representations of the diagram
categories just described and the corresponding purely algebraic constructions. We do this by
passing via our balanced tensor product M

bal
⊗
C
N of C-module categories, and its sister construction

the category BiBal(D ,C)(M ,N) of bibalanced objects of M ⊗ N .

We define functors from M
bal
⊗
C
N and BiBal(D ,C)(M ,N) to representations of their associated

diagram categories (respectively (3.0.1) and (3.0.2)), and also to categories of module and
bimodule functors. When all of our categories are finitely semisimple all of these functors
are equivalences. In turn the Deligne product of module categories is known to be modelled
by a functor category in the finitely semisimple case [11], so this will connect all of our
constructions. When C � D we also obtain an equivalence between the Drinfeld center
Z( MC C) and representations of a special case of the annular category with only one equatorial
boundary line.
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3.1 Properties of the category M ⊗ N
This section contains basic results on the naïve tensor product M ⊗ N when M and N are each
module categories. We collect together some important definitions and technical facts which we
will reference in the sequel.

Thus in this section let C be a k-linear rigid monoidal category, and let MC and NC be a
pair of right and left module categories for C.

Definition 3.1.1. For every object X ∈ C there are natural functors LC and RC : C × (M ⊗N) →
M ⊗ N defined for X ∈ C by

LC(X)(M ⊗ N) � (M / X) ⊗ N and RC (X)(M ⊗ N) � M ⊗ (X . N)

and extending to direct sums.

Note that if M and N were instead respective left and right D-module categories then we
have analogous functors LD and RD : D × (M ⊗ N) → M ⊗ N .

Remark 3.1.2. By unravelling definitions for all X,Y ∈ C and S ∈ M ⊗ N we have a literal
equality

(LC(X) ◦ RC (Y))(S) � ( RC (Y) ◦ LC(X))(S).

The module associators nX,Y,M : M/(X⊗Y) → (M/X)/Y and mX,Y,N : (X⊗Y).N → X.(Y.N)
further give rise to natural isomorphisms

nL
X,Y,S : LC(X ⊗ Y)(S) → (LC(Y) ◦ LC(X))(S), and

mR
X,Y,S : RC (X ⊗ Y)(S) → ( RC (X) ◦ RC (Y))(S) (3.1.1)

in the obvious way (note the interchange of X and Y in nL
X,Y,S compared to mR

X,Y,S). Namely
nL

X,Y,S is constructed just by tensoring nX,Y,M on the left with the identity, and mR
X,Y,S is similarly

obtained by tensoring mX,Y,N on the right instead.
The unitors rM : M / 1→ M and lN : 1 .N → N similarly give rise to natural isomorphisms

uL
S : LC(1)(S) → S and uR

S : RC (1)(S) → S.

Definition 3.1.3. The hom-pairing on Mop ⊗M is the functor HomM : Mop ⊗M → Vec defined
on objects by

HomM(M1 ⊗ M2) � M(M1 → M2)

and extending to direct sums. We define HomM on morphisms in Mop ⊗ M by pre- and
post-composition in the obvious way.

The fact that M is tensored over Vec means that the hom-pairing can be used to build a
functor (we suppress an association of the tensor product Mop ⊗ M ⊗ N → N , there being an
obvious equivalence between the two possibilities)

HomM N : Mop ⊗ M ⊗ N → N ,

which for example sends M1 ⊗ M2 ⊗ N to M(M1 → M2)N. The functors of Definition 3.1.1
naturally interact with HomM N via several structure maps, which we now construct. Of course
there is also a dual functor M HomN : M ⊗ Nop ⊗ N → M with its own analogous structure
maps obtained formally from those which we give below.

The following proposition will permit us at first to simplify the statements of the structure
maps, and will play a much more significant role in Chapter 4.
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Proposition 3.1.4 (Dual bimodule category). If M is a (C ,D)-bimodule category, then Mop is
naturally a (D , C)-bimodule category in two different ways, which we call M∗ and M∗ . Moreover, the
iterated duals (M∗)∗ and ( M∗ )∗ recover the original bimodule category up to equivalence.

Proof. Each bimodule category structure MC D is precisely the data of a bimodule category
structure MDmop Cmop . Also, the opposite of the underlying ordinary category of M gives a
bimodule structure Mop

Cop Dop . Combining these two facts together yields a (Dop,mop , Cop,mop)-
bimodule structure on Mop. Since rigid categories are monoidally equivalent to their dual
opposite (Corollary 1.2.9.1) we obtain the desired (D , C)-bimodule category structures M∗ and
M∗ by respectively using the right dual functors in C and D, and the left dual functors in C

and D.
Note that in a precise 3-categorical sense these are the correct notions of left and right duals

of bimodule categories (see Definition 2.4.4 of [8] and the remarks subsequent).

It is easy to see that every left or right C-module category is a bimodule category with Vec
acting on the other side, essentially just because all linear functors preserve direct sums. Thus
we obtain that the analogous fact holds for module categories as well. For the remainder of
this section, as in the next proposition, we take the (bi)module category structure induced by
Proposition 3.1.4 for granted. To avoid a mess of nested parentheses below we write X . M ⊗ S
for (X . M) ⊗ S (with M ∈ M∗, X ∈ C, and S ∈ M ⊗ N).

Proposition 3.1.5 (Swap isomorphism). There is a canonical natural isomorphism (with M ∈ M∗,
X ∈ C, and S ∈ M ⊗ N)

φM,X,S : (HomM N)(M ⊗ LC(X)(S)) ∼−−−→ (HomM N)(X . M ⊗ S).

Proof. Recall that for X ∈ C and M ∈ M∗ the object X . M is by definition M / X∗ , and
hence it is the content of Proposition 1.3.10 that there is a natural isomorphism δX,M1 ,M2 :
HomM(M1 / X∗ ⊗ M2) → HomM(M1 ⊗ M2 / X). The functor HomM(X . M1 ⊗ M2) factors as
(HomM ◦(X . − ⊗ M))(M1 ⊗ M2) and HomM(M1 ⊗ M2 / X) factors similarly, so whiskering
δX,M1 ,M2 with the identity functor on N on the right we obtain the desired natural transformation
φM,X,S.

If S ∈ M ⊗ N is a direct sum
S �

⊕
i

Mi ⊗ Ni

with Mi ∈ M, Ni ∈ N , then in explicit terms we have just constructed the natural map (for
M ∈ M∗)

HomM N ©«
⊕

i

M ⊗ (Mi / X) ⊗ Ni
ª®¬ �

⊕
i

M(M → Mi / X)Ni

∼−−−→
⊕

i

M(X . M → Mi)Ni � (HomM N) ©«
⊕

i

(X . M) ⊗ Mi ⊗ Ni
ª®¬

using Proposition 1.3.10.

Proposition 3.1.6. There is a canonical natural isomorphism (with M ∈ M∗, X ∈ C, and S ∈ M ⊗N)

tM,X,S : ((HomM N))(M ⊗ RC (X)(S)) ∼−−−→ X . (HomM N)(M ⊗ S).
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Proof. This follows directly from the fact that the module action preserves direct sums (and thus
respects the tensoring of N over Vec).

We now establish that the natural isomorphisms φ and t just introduced are each compatible
with one another, and are compatible with the module structure in a certain special sense. Each
claim follows from elementary properties of duals or direct sums in module categories, and so
the proof of each is omitted.

Proposition 3.1.7 (Compatibility of φ and t). For all M ∈ M∗, X,Y ∈ C, and S ∈ M ⊗ N , the
diagram

X . (HomM N)(Y . M ⊗ S)

X . (HomM N)(M ⊗ RC (Y)(S)) (HomM N)(Y . M ⊗ LC(X)(S))

(HomM N)(M ⊗ (LC(X) ◦ RC (Y))(S)) (HomM N)(M ⊗ ( RC (Y) ◦ LC(X))(S))

X.φM,Y,S tY.M,X,S

tM,X, RC (Y)(S) φM,Y,LC(X)(S)

is commutative.

Proposition 3.1.8 (Module associativity compatibility of φ). For all M ∈ M∗, X,Y ∈ C, and
S ∈ M ⊗ N , the diagram

(HomM N)(XY . M ⊗ S) (HomM N)(X . (Y . M) ⊗ S)

(HomM N)(Y . M ⊗ LC(X)(S))

(HomM N)(M ⊗ LC(XY)(S)) (HomM N)(M ⊗ (LC(Y) ◦ LC(X))(S))

(HomM N)(n∗−1
X,Y,M⊗S)

φY.M,X,S

(HomM N)(M⊗nL
X,Y,S)

φM,XY,S

φM,Y,LC(X)(S)

is commutative.

Proposition 3.1.9 (Module identity compatibility of φ). For all M ∈ M∗ and S ∈ M ⊗ N the
diagram

(HomM N)(1 . M ⊗ S) (HomM N)(M ⊗ S)

(HomM N)(M ⊗ RC (1)(S))

(HomM N)(r∗−1
M ⊗S)

φM,1,S
(HomM N)(M⊗uL

S )

is commutative.

Proposition 3.1.10 (Module associativity compatibility of t). For all M ∈ M∗, X,Y ∈ C, and
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S ∈ M ⊗ N , the diagram

XY . (HomM N)(M ⊗ S) X . (Y . (HomM N)(M ⊗ S))

X . (HomM N)(M ⊗ RC (Y)(S))

(HomM N)(M ⊗ RC (XY)(S)) (HomM N)(M ⊗ ( RC (X) ◦ RC (Y))(S))

mX,Y,(HomM N)(M⊗S)

X.tM,Y,S

tM,XY,S

(HomM N)(M⊗mR
X,Y,S)

tM,X, RC (Y)(S)

is commutative.

Proposition 3.1.11 (Module identity compatibility of t). For all M ∈ M∗ and S ∈ M ⊗ N the
diagram

1 . (HomM N)(M ⊗ S) (HomM N)(M ⊗ S)

(HomM N)(M ⊗ RC (1)(S))

l(HomM N)(M⊗S)

(HomM N)(M⊗uR
S )

tM,1,S

is commutative.

In the following proposition we define the key functor which we will use to relate the
balanced tensor product (once defined) to the other notions of tensor products of module
categories.

Proposition 3.1.12. Let M and N be k-linear categories. Then there is a functor

P : M ⊗ N → [Mop → N].

Proof. Let S ∈ M ⊗ N be any object. Then we can construct a functor P(S) : Mop → N by
forming the composite

Mop Mop ⊗ M ⊗ N N .Mop⊗S HomM N

Concretely, if
S �

⊕
i

Mi ⊗ Ni .

then the functor P(S) sends some M ∈ Mop to

M 7−−−−−−−−−→ M ⊗ S �

⊕
i

M ⊗ Mi ⊗ Ni 7−−−−−−−−−→
⊕

i

M(M → Mi)Ni .

Now given a morphism f : S → T in M ⊗ N , we need to produce a natural transformation
P( f ) : P(S) → P(T). This is the data for each M ∈ Mop of a morphism

P(S)(M) � (HomM N)(M ⊗ S) → (HomM N)(M ⊗ T) � P(T)(M),

which we produce in the obvious way; namely, we define P( f ) componentwise by setting
P( f )M � (HomM N)(M ⊗ f ). Of course, we must verify that for every morphism g : M1 → M2
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in Mop the naturality square

(HomM N)(M1 ⊗ T) (HomM N)(M2 ⊗ T)

(HomM N)(M1 ⊗ S) (HomM N)(M2 ⊗ S)

(HomM N)(g⊗T)

(HomM N)(g⊗S)

(HomM N)(M1⊗ f ) (HomM N)(M2⊗ f )

commutes, but this is immediate from the fact that HomM N is a functor.

Remark 3.1.13. Dual to the functor P there is a functor

P′ : M ⊗ Nop → [N → M],

given for each T ∈ M ⊗ Nop by the composite

N M ⊗ Nop ⊗ N M .
T⊗N M HomN

Of course P′ can be interpreted a functor M ⊗ N → [Nop → M] instead since (Nop)op is just
N , and the results of this section are all naturally translated into corresponding results for P′.

As a consequence, we have a pair of maps P and P′ from M ⊗ N into the functor categories
[Mop → N] and [Nop → M]. These two functor categories are in general not equivalent, nor
even comparable. Nonetheless, it will follow from the results of Section 3.3 (see Remark 3.3.4)
that when both M and N are finitely semisimple the categories [Mop → N] and [Nop → M]
are equivalent.

3.2 Balancings and bibalancings

Let C and D be k-linear rigid monoidal categories.

Definition 3.2.1. Let MC and NC be module categories, and let S ∈ M ⊗ N . A balancing of S
(with respect to the C-module structures on M and N) is a natural isomorphism

τX : LC(X)(S) ∼−−→ RC (X)(S)

such that the associativity constraint diagram

RC (XY)(S) ( RC (X) ◦ RC (Y))(S)

( RC (X) ◦ LC(Y))(S)

(LC(Y) ◦ RC (X))(S)

LC(XY)(S) (LC(Y) ◦ LC(X))(S)

mR
X,Y,S

RC (X)(τY)

τXY

nL
X,Y,S

LC(Y)(τX)

(3.2.1)
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commutes for all X,Y ∈ C.

Suppose for a moment that we have bimodule categories MD C and NC D , with middle
associators rY,M,X and sX,N,Y respectively. Then just as we had the natural isomorphisms nL and
mR, there are natural isomorphisms

sL
X,Y : ( LD (Y) ◦ LC(X))(S) → (LC(X) ◦ LD (Y))(S), and

sR
X,Y : (RD(Y) ◦ RC (X))(S) → ( RC (X) ◦ RD(Y))(S).

Definition 3.2.2. Suppose MD C and NC D are bimodule categories. Then a bibalancing of
S ∈ M ⊗ N (with respect to this bimodule structure) is a pair

(τX : LC(X)(S) ∼−−→ RC (X)(S), σY : LD(Y)(S) ∼−−→ RD (D)(S))

of balancings of S with respect to the right C- and Dmop-module category structures on M and
N so that for all X ∈ C and Y ∈ D the bibalancing compatibility constraint diagram

( RC (X) ◦ RD(Y))(S) (RD(Y) ◦ RC (X))(S)

( RC (X) ◦ LD (Y))(S) (RD(Y) ◦ LC(X))(S)

( LD (Y) ◦ RC (X))(S) (LC(X) ◦ RD(Y))(S)

( LD (Y) ◦ LC(X))(S) (LC(X) ◦ LD (Y))(S)

sR
X,Y,S

RC (X)(σY) RD (Y)(τX)

LD (Y)(τX)

sL
X,Y,S

LC(X)(σY)

(3.2.2)

commutes.

Proposition 3.2.3. Let (S, τ) be an arbitrary balanced object of M ⊗ N . Then the diagram

RC (1)(S) S

LC(1)(S)

uR
S

τ1 uL
S

(3.2.3)

is commutative. Thus τ1 is fixed by S.
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Proof. Setting X � Y � 1 in (3.2.1) and drawing three naturality squares yields a diagram

RC (1)(S) RC (11)(S) ( RC (1) ◦ RC (1))(S) RC (1)(S)

( RC (1) ◦ LC(1))(S) LC(1)(S)

(LC(1) ◦ RC (1))(S) RC (1)(S)

LC(1)(S) LC(11)(S) (LC(1) ◦ LC(1))(S) LC(1)(S).

mR
1,1,S

RC (l1)(S) uR
RC (1)(S)

RC (1)(τ1)

uR
LC(1)(S)

τ1

uL
RC (1)(S)

τ1 τ11

nL
1,1,SLC(l1)(S)

LC(1)(τ1)

uL
LC(1)(S)

τ1

The topmost and bottommost faces commute by the coherence theorem for module categories,
and hence the entire diagram is commutative. Since τ1 is an isomorphism this implies that the
upper square in the diagram below commutes.

( RC (1) ◦ LC(1))(S) (LC(1) ◦ RC (1))(S)

LC(1)(S) RC (1)(S)

S

uR
LC(1)(S)

RC (1)(uL
S ) uL

RC (1)(S)

τ1

uL
S uR

S

The four dotted morphisms form a quadrilateral which commutes by naturality of uR, and
the upper right triangular face also commutes by definition. Thus it follows that the bottom
triangular face commutes as well, as desired.

Definition 3.2.4. Given any pair of module categories MC and NC there is a category
BalC(M ,N) of C-balanced objects of M ⊗ N . That is, the objects of BalC(M ,N) are pairs
(S, τ) with S an object of M ⊗ N equipped with a balancing τX : LC(X)(S) → RC (X)(S) of S. A
morphism of balanced objects (S, τ) → (T, κ) is just morphism f : S → T in M ⊗ N such that
the diagram

LC(X)(T) RC (X)(T)

LC(X)(S) RC (X)(S)

κX

τX

LC(X)( f ) RC (X)( f ) (3.2.4)
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is commutative for all X ∈ C. It is clear that morphisms of C-balanced objects are closed under
composition, and that the identity is always a morphism of C-balanced objects.

Similarly when MD C and NC D are bimodule categories there is a category BiBal(D ,C)(M ,N)
of (D , C)-bibalanced objects of M ⊗ N with objects triplets (S, τ, σ) with (τ, σ) a bibalancing of
S in M. A morphism (S, τ, σ) → (T, κ, χ) in BiBal(D ,C)(M ,N) is just a morphism f : S → T
which is simultaneously a morphism of the respective pairs of C- and Dmop-balanced objects
(S, τ) and (T, κ), and (S, σ) and (T, χ).

The nature of the balancing and bibalancing constraints (3.2.1) and (3.2.2), along with the
morphism constraint (3.2.4), imply that the categories BalC(M ,N) and BiBal(D ,C)(M ,N) each
have direct sums. We simply take direct sums of underlying objects and morphisms, and direct
sums of the components of the balancings of objects. It is easy to then see that BalC(M ,N) and
BiBal(D ,C)(M ,N) are both k-linear categories.

Proposition 3.2.5. Let MC and NC be C-module categories. Then the functor P of Proposition 3.1.12
extends to a functor P : BalC(M ,N) → [ M∗

C → NC ].

Proof. Let (S, τ) ∈ BalC(M ,N) be any balanced object; then Proposition 3.1.12 already generates
a functor P(S) : Mop → N .

It remains to construct a modulator in order to turn P(S) into a left C-module functor. For
this purpose, observe that we have an isomorphism

M ⊗ LC(X)(S) M⊗τX−−−−−−−−−→ M ⊗ RC (X)(S) (3.2.5)

in M∗ ⊗M ⊗N coming from the C-balancing τX of S. Applying the functor HomM N to (3.2.5)
we can then form the composite of isomorphisms

(HomM N)(X . M ⊗ S)
φ−1

M,X,S−−−−−−−−−−−−−−−−−−→ (HomM N)(M ⊗ LC(X)(S))
(HomM N)(M⊗τX)−−−−−−−−−−−−−−−−−−→ (HomM N)(M ⊗ RC (X)(S))

tM,X,S−−−−−−−−−−−−−−−−−−→ X . (HomM N)(M ⊗ S). (3.2.6)

Since by definition

P(S)(X . M) � (HomM N)(X . M ⊗ S) and X . P(S)(M) � X . (HomM N)(M ⊗ S),

we obtain the left modulator cX,M : P(S)(X . M) → X . P(S)(M) by taking (3.2.6) verbatim.
The modulator identity constraint is encoded in the boundary of Figure 3.1. The triangle J1

commutes by Proposition 3.1.9, and the triangle J3 commutes by Proposition 3.1.11 similarly.
The square J2 is obtained by tensoring with M and applying the functor HomM N to the identity
triangle for the balancing τ of Proposition 3.2.3. This establishes commutativity of the outer
boundary, and thus the modulator identity constraint for P(S).

The associativity constraint for the modulator cX,M then amounts to verification that external
boundary of the diagram of Figure 3.2 commutes. It is the content of Proposition 3.1.8 that the
lower pentagon H1 commutes, and the upper pentagon H6 commutes by Proposition 3.1.10
similarly. Squares H2 and H4 commute by the respective naturality of φ and t. The pentagon
H3 is the compatibility between φ and t asserted by Proposition 3.1.7. Finally, the hexagon H5 is
obtained by tensoring with M and applying the functor HomM N to the associativity constraint
(3.2.1) for the balancing τ. Therefore the outer polygon commutes, and thus P(S) really becomes
a left C-module functor when equipped with the modulator (3.2.6).
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1 . (HomM N)(M ⊗ S)

(HomM N)(M ⊗ S) (HomM N)(M ⊗ RC (1)(S))

(HomM N)(M ⊗ S) (HomM N)(M ⊗ LC(1)(S))

(HomM N)(1 . M ⊗ S)

lN(HomM N)(M⊗S)
tM,1,S

(HomM N)(M⊗uL
S )

(HomM N)(τ1⊗M)

(HomM N)(M⊗uR
S )

φ−1
M,1,S(HomM N)(lM∗

M ⊗S)

J2

J1

J3

Figure 3.1: The modulator identity constraint for P(S).
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X . (Y . (HomM N)(M ⊗ S)) X . (Y . (HomM N)(M ⊗ S))

H6 XY . (HomM N)(M ⊗ S)

X . (HomM N)(M ⊗ RC (Y)(S)) (HomM N)(M ⊗ RC (X)( RC (Y)(S))) (HomM N)(M ⊗ RC (XY)(S))

X . (HomM N)(M ⊗ LC(Y)(S)) (HomM N)(M ⊗ RC (X)(LC(Y)(S)))

X . (HomM N)(Y . M ⊗ S)

(HomM N)(Y . M ⊗ RC (X)(S)) (HomM N)(M ⊗ LC(Y)( RC (X)(S)))

(HomM N)(Y . M ⊗ LC(X)(S)) (HomM N)(M ⊗ LC(Y)(LC(X)(S))) (HomM N)(M ⊗ LC(XY)(S))

(HomM N)(X . (Y . M) ⊗ S) H1

(HomM N)(XY . M ⊗ S) (HomM N)(XY . M ⊗ S)

mX,Y,(HomM N)(M⊗S)

X.tM,Y,S

tM,X, RC (Y)(S)

tM,XY,S

(HomM N)(M⊗nL
X,Y,S)

X.(HomM N)(M⊗τY)

tM,X,LC(Y)(S)

(HomM N)(M⊗ RC (X)(τY))

X.φ−1
M,Y,S

tY.M,X,S

φM,Y, RC (X)(S)

(HomM N)(Y.M⊗τX)

φM,Y,LC(S)

(HomM N)(M⊗LC(Y)(τX))

(HomM N)(M⊗τXY)

(HomM N)(M⊗mR
X,Y,S)

φ−1
Y.M,X,S

(HomM N)(mX,Y,M⊗S)

φ−1
M,XY,S

H2

H3

H4

H5

Figure 3.2: The modulator associativity constraint for P(S).
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Given a morphism f : (S, τ) → (T, κ) of balanced objects, we need to check that the natural
transformation P( f ) : P(S) → P(T) is a morphism of left C-module functors. This amounts to
verifying commutativity of the boundary of Figure 3.3.

X . (HomM N)(M ⊗ S) X . (HomM N)(M ⊗ T)

(HomM N)(M ⊗ RC (X)(S)) (HomM N)(M ⊗ RC (X)(T))

(HomM N)(M ⊗ LC(X)(S)) (HomM N)(M ⊗ LC(X)(T))

(HomM N)(X . M ⊗ S) (HomM N)(X . M ⊗ T)

(HomM N)( f ⊗M)

(HomM N)(M⊗ RC (X)( f ))

tM,X,S tM,X,T

(HomM N)(M⊗LC(X)( f ))

(HomM N)(M⊗τX) (HomM N)(M⊗κX)

HomM ( f ⊗X.M)

φ−1
M,X,S φ−1

M,X,T
K1

K2

K3

Figure 3.3: The module functor morphism constraint for P( f : (S, σ) → (T, κ)).

The square K1 commutes by naturality of φ, and the square K3 commutes by naturality of t.
The final square K2 is obtained by tensoring the balancing morphism constraint (3.2.4) with M
and then applying the functor HomM N .

Proposition 3.2.6. Let MD C and NC D be bimodule categories. Then the functor P of Proposition 3.1.12
extends to a functor P : BiBal(D ,C)(M ,N) → [ M∗

C D → NC D].

Proof. There is an evident forgetful functor BiBal(D ,C)(M ,N) → BalC(M ,N) obtained from
forgetting the respective side of the bimodule category structure of M and N on which D acts.
Thus (together with the forgetful functor corresponding to forgetting a C-module structure)
Proposition 3.2.5 implies that for each (S, σ, τ) ∈ BiBal(D ,C)(M ,N) the functor P(S) : M∗ → N
canonically becomes a left D- and right C-module functor.

Hence it remains to just verify that the left C- and right D-module functor structures are
compatible and extend to the data of a bimodule functor. That is, we must verify commutativity
of the boundary of Figure 3.4 (in which we write HN for HomM N for brevity).
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(X .HN(M ⊗ S)) / Y X . (HN(M ⊗ S) / Y)

HN(M ⊗ RC (X)(S)) / Y HN(M ⊗ (RD(Y) ◦ RC (X))(S)) HN(M ⊗ ( RC (X) ◦ RD(Y))(S)) X .HN(M ⊗ RD(Y)(S))

HN(M ⊗ LC(X)(S)) / Y HN(M ⊗ (RD(Y) ◦ LC(X))(S)) HN(M ⊗ ( RC (X) ◦ LD (Y))(S)) X .HN(M ⊗ LD (Y)(S))

HN(X . M ⊗ S) / Y X .HN(M / Y ⊗ S)

HN(X . M ⊗ RD(Y)(S)) HN(M ⊗ (LC(X) ◦ RD(Y))(S)) HN(M ⊗ ( LD (Y) ◦ RC (X))(S)) HN(M / Y ⊗ RC (X)(S))

HN(X . M ⊗ LD (Y)(S)) HN(M ⊗ (LC(X) ◦ LD (Y))(S)) HN(M ⊗ ( LD (Y) ◦ LC(X))(S)) HN(M / Y ⊗ LC(X)(S))

HN((X . M) / Y ⊗ S) HN(X . (M / Y) ⊗ S)

sX,HN(M⊗S),Y

tCM,X,S/Y

tDM,Y, RC (X)(S) HN(M⊗sL
X,Y,S)

tCM,X,RD(Y)(S)

X.tDM,Y,S

HN(M⊗τX)/Y

tDM,Y,LC(X)(S)

HN(M⊗RD (Y)(τX)) HN(M⊗ RC (X)(κY))

tCM,X, LD (Y)(S)

X.HN(M⊗κY)

φC−1
M,X,S/Y X.φD−1

M,S,Y

tDX.M,Y,S

φC
M,X,RD(Y)(S) φD

M,Y, RC (X)(S)

tCM/Y,X,S

HN(X.M⊗κY)

φC
M,X, LD (Y)(S) HN(M⊗sR

X,Y,S)

HN(M⊗LC(X)(κY))

φD
M,Y, RC (X)(S)

HN(M⊗ LD (Y)(τX)) HN(M/Y⊗τX)

φD−1
X.M,Y,S

HN(sX,M,Y⊗S)

φC−1
M/Y,X,S

L3 L5 L7

L2

L4

L6

L8

L1

L9

Figure 3.4: The bimodule functor compatibility constraint (1.3.1) for P(S).

The squares L2, L4, L6, and L8 are all consequences of the naturality of either φ or t. Squares
L3 and L7 commute by the variants of Proposition 3.1.7 for when φ and t come from different
module structures. Commutativity of the squares L1 and L9 constitute the compatibility results
for φ and t for the bimodule associator which are analogous to Propositions 3.1.8 and 3.1.10.
Finally, the hexagon L5 is obtained from tensoring the bibalancing compatibility constraint
(3.2.2) with M and applying the functor HomM N .

Since a morphism of bimodule functors is just a morphism of each left and right module
functor structure separately, this completes the proof.

3.3 Algebraic consequences of finite semisimplicity

Henceforth fix a distinguished collection {Xi} of representatives of the isomorphism classes of
simple objects of M, and another such collection {Yj} for N . Suppose also that M (but not N)
is finitely semisimple.

Proposition 3.3.1. There is a functor Q : [Mop → N] → M ⊗ N which is pre-inverse to P :
M ⊗ N → [Mop → N] of Proposition 3.1.12 (up to natural isomorphism). If N is semisimple then P
and Q together witness an equivalence of categories.
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Proof. Given a functor F : Mop → N , we get an object of M ⊗ N by the formula

Q(F) �
⊕

i

Xi ⊗ F(Xi).

Then given a natural transformation η : F → G of functors Mop → N we can similarly form the
direct sum

Q(η) �
⊕

i

Xi ⊗ ηXi : Q(F) → Q(G),

obtaining a morphism in M ⊗N ; this assignment is obviously functorial, so we obtain a functor
Q : [Mop → N] → M ⊗ N .

Now, in order to provide a natural isomorphism αF : F → PQ(F), we must determine a
natural isomorphism (αF)Xi for each simple object Xi . This is just the data of a map

(αF)Xi : F(Xi)
∼−−→

⊕
j

M(Xi → X j)F(X j),

which we build by taking an isomorphism F(Xi) → M(Xi → Xi)F(Xi) and ignoring all other
summands. Since M(Xi → X j) � 0 for all i , j, the complete map (αF)Xi so assembled is an
isomorphism, too. These components yield a natural isomorphism αF just because of the fact
that the tensored action of Vec on M is functorial. Naturality of α itself asserts in components
that for any f : F → G in End(M) the outer boundary of the rectangle⊕

i M(Xi → X j)G(Xi)
⊕

i M(Xi → X j)G(Xi)

⊕
i M(Xi → X j)F(Xi) G(X j)

F(X j) F(X j)

f̃Xj

PQ( f )Xj (αG)Xj

(αF)Xj fXj

is commutative, with the middle horizontal morphism being assembled from the zero map
for every summand of

⊕
i M(Xi → X j)F(Xi) with i , j, and from fX j for i � j. Both squares

commute by applying elementary properties of direct sums to the definition of α.

Finally, assume that N is semisimple. We must construct a second natural isomorphism
βS : S → QP(S). Now, it is clear that every such S ∈ M ⊗N is isomorphic to a direct sum of the
form (for some sequences of indices ai and bi)⊕

i

Xai ⊗ Ybi , (3.3.1)

i.e. that M ⊗ N is then semisimple as well. Thus we will just define the components of β
assuming that S � Xi ⊗ Yj (a summand of (3.3.1)), and will then extend using semisimplicity
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and the axiom of choice. In this situation, the component βS is the data of a morphism

βS : Xi ⊗ Yj
∼−−→

⊕
k

Xk ⊗ (HomM N)(Xk ⊗ Xi ⊗ Yj)

�
⊕

k

Xk ⊗ M(Xk → Xi)Yj .

Thus as in the previous case it is sufficient to now choose an isomorphism Yj → M(Xi → Xi)Yj

for each Xi and Yj , and elementary properties of direct sums then again yield that a natural
transformation may be built by extending the definition of βS to all direct sums and isomorphic
objects.

Proposition 3.3.2. The functor Q of Proposition 3.3.1 extends to a functor Q : [ M∗
C → NC ] →

BalC(M ,N), again part of an equivalence when N is semisimple.

Proof. In order to extend Q to a functor into BalC(M ,N), let F be any left C-module functor
M∗ → N with modulator isomorphism cX,M : F(X . M) → X . F(M). Then together with the
isomorphism αF : F → PQ(F) of Proposition 3.3.1, the modulator cX,M for F may be transported
in the obvious way (filling in the missing arrow in the commutative diagram which asserts that αF

is a morphism of module functors) to obtain a modulator dX,M : PQ(F)(X .M) → X .PQ(F)(M)
for PQ(F).

Recalling the definition of P, the modulator d consists in components of morphisms

dX,M : (HomM N)(X . M ⊗ Q(F)) → X . (HomM N)(M ⊗ Q(F)).

Thus by using the natural isomorphisms φ and t−1 we may build the composite (again, a natural
isomorphism)

ξM,X : (HomM N)(M ⊗ LC(X)(Q(F)))
φM,X,Q(F)−−−−−−−−−−−−−→ (HomM N)(X . M ⊗ Q(F))

dX,M−−−−−−−−−−−−−→ X . (HomM N)(M ⊗ Q(F))
t−1
M,X,Q(F)−−−−−−−−−−−−−→ (HomM N)(M ⊗ RC (X)(Q(F)))

from which we will imminently extract a balancing of Q(F). Fixing X ∈ C and taking
S � LC(X)(Q(F)) and T � RC (X)(Q(F)), we recognise ξM,X as a natural transformation P(S) �
(HomM N)(M ⊗ S) → (HomM N)(T ⊗ M) � P(T). Thus the fact that P is fully faithful as a
functor to M ⊗N (by Proposition 3.3.1) yields a unique lift of ξ−,X to an ordinary isomorphism
τX : S � LC(X)(Q(F)) → RC (X)(Q(F)) � T in M ⊗ N . Allowing X ∈ C to vary then yields
morphisms τX which assemble into a natural transformation.

We now claim that the natural transformation τX is balancing of Q(F), and because by
construction (HomM N)(M ⊗ τX) � ξM,X , we have essentially given the argument already. The
associativity condition to be verified is precisely the interior region H5 of Figure 3.2, and since the
exterior boundary commutes by the associativity condition for the modulator isomorphism dX,M ,
the associativity condition for τX is verified (all other internal faces commute unconditionally).
Similarly the interior region J2 of Figure 3.1 is the identity constraint to be verified for τX , and
commutativity follows again by the identity axiom for the modulator dX,M . Hence the natural
isomorphism τX is a balancing of Q(F), and thus extends the definition of Q on the objects of
[ M∗
C → NC ].

It remains to check that morphisms η : F → G in [ M∗
C → NC ] are sent by Q to morphisms

of balanced objects. But since the module functor morphism condition which any such η obeys
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asserts that the exterior boundary of Figure 3.3 commutes, the face K2 commutes as well because
all others commute unconditionally. This completes the proof.

Proposition 3.3.3. The functor Q of Proposition 3.3.2 further extends to a functor Q : [ M∗
C D →

NC D] → BiBal(D ,C)(M ,N), again part of an equivalence when N is semisimple.

Proof. By two applications of the previous proposition a bimodule functor F : M∗
C D → NC D is

canonically assigned an object S ∈ M ⊗ N and a pair of balancings

τX : LC(X)(S) ∼−−→ RC (X)(S) and σY : LD(Y)(S) ∼−−→ RD (D)(S)

with respect to the left C- and right D-module structure. We are just left to verify that these two
balancings are compatible in the sense of (3.2.2); observe that unravelling the construction of the
two balancings τ and σ, the bimodule functor condition on F asserts that the exterior boundary
of Figure 3.4 commutes. Thus since all of the internal faces with the exception of L5 commute
unconditionally, we obtain commutativity of the face L5 as well, and the proof is complete.

Remark 3.3.4. In Remark 3.1.13 we saw that there was a functor P’ dual to P and mapping
M ⊗ N into [Nop → M], and it is not difficult to see that the results of the last two sections
translate into analogous statements for P′. In particular, when M is finitely semisimple and N
is semisimple Proposition 3.3.1 and its counterpart for P′ yield a composite of equivalences

[M∗ → N]
Q

−−−−−−−−−→ M ⊗ N P−−−−−−−−−→ [ N∗ → M].

We also find that the module functor categories [ M∗
C → NC ] and [ N∗ C → MC] are equivalent,

and similarly when M and N are bimodule categories.
This is a manifestation of the fact that functors between finitely semisimple categories have

all left and right adjoints, and that this does not hold in general.

3.4 The definition of the balanced tensor product

Definition 3.4.1. The balanced tensor product M
bal
⊗
C
N is just the category BalC(M ,N).

Thinking of the category of balanced objects of a pair of C-module categories as a tensor
product, we expect the following results of standard type.

Proposition 3.4.2. The balanced tensor product MD
bal
⊗
C
NE of bimodule categories M and N is a

(D , E)-bimodule category. (This justifies our notation.)

Proof. Observe that LD is a functor D → End(M
bal
⊗
C
N), and it essentially gives the left D-action.

Given an object (S, τ) of MD
bal
⊗
C
NE we construct a balancing isomorphism for LD (Y)(S) by the

composite

κX : LC(X)( LD (Y)(S))
sL−1

Y,X,S−−−−−−−−−−−−−→ LD (Y)(LC(X)(S))
LD (Y)(τY)

−−−−−−−−−−−−−→ LD (Y)( RC (X)(S)) � RC (X)( LD (Y)(S)).

On objects we set Y.(S, τ) :� ( LD (Y)(S), κX), and on morphisms f .g :� LD ( f )(g); the balancing
associativity condition for (S, τ) and the condition on morphisms of balancings g are verified by
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applying the functor LD (Y) to the corresponding diagrams for (S, τ) and g, then juxtaposing
some naturality squares and the middle associativity pentagon for sL. The modulator for
the D-action is just mL

X,Y,M : LD (XY)(M) → ( LD (X) ◦ LD (Y))(M), which obeys the required
identities just because of the same identities for the ordinary left D-module structure on M.

Similarly we obtain a formally dual right E-module structure from RE . The D- and E-module
structures strictly commute, so in particular we obtain a (D , E)-bimodule category.

Proposition 3.4.3. Let MD C and NC D be bimodule categories. Then upon equipping each with its
respective canonically associated right or left module category structure (i.e. flip), there is an equivalence
of categories M

bal
⊗

Dmop⊗C
N ' BiBal(D ,C)(M ,N).

Proof. We just translate the correspondence between bimodule categories MD C and right (or left)
module categories MDmop⊗C into the language of (bi)balancings. The bibalancing compatibility
condition (3.2.2) exactly says that the balancings τ and σ of any (S, τ, σ) ∈ BiBal(D ,C)(M ,N)
assemble into a single right (C ⊗ Dmop)-balancing. Simultaneous morphisms of τ and σ are
consequently morphisms of the resulting (C ⊗ Dmop)-balancing by superimposing the two
compatibility squares and tensoring.

There is also the following direct connection between arbitrary categories of bibalanced
objects and the Drinfeld center of their balanced tensor product.

Proposition 3.4.4. There is an equivalence of categories Z( MD
bal
⊗
C
ND) ' BiBal(D ,C)(M ,N).

Proof. Objects of Z( MD
bal
⊗
C
ND) and BiBal(D ,C)(M ,N) can both be interpreted as objects of

BalC(M ,N) equipped with various extra data, and likewise morphisms in each category can be
interpreted as morphisms in BalC(M ,N) each satisfying some condition(s). We will just show
that such additional data and the conditions on morphisms are in functorial bĳection.

Thus let ((S, τY), βX : X . (S, τ) → (S, τ) / X) be an object of Z( MD
bal
⊗
C
ND). Since X . S �

LD (X)(S) and S / X � RD(X)(S), the data of β is exactly the same as the natural isomorphism
data of a balancing (notwithstanding the condition such a balancing must satisfy). Since the
middle associativity isomorphism in BalC(M ,N) is the identity, we then see directly that the
balancing condition (3.2.1) is exactly the half-braiding condition (1.5.1).

Hence in order to find that the objects of Z( MD
bal
⊗
C
ND) and BiBal(D ,C)(M ,N) are precisely

the same, we just must verify that compatibility of τY and βX in the sense of a bibalanced
object corresponds to the statement that βX is a morphism of C-balanced objects for all X ∈ D.
Fortunately, this is exactly the case; we recognise the left-bottom and right-top corner composites
of (3.2.2) as the action of X ∈ D on each side of the balancing of (S, τY), hence giving a square
equivalent to (3.2.4).

Finally, the data of a morphism in Z( MD
bal
⊗
C
ND) and BiBal(D ,C)(M ,N) being identical, the

morphism square (1.5.2) for Z corresponds exactly to the morphism square (3.2.4).

Corollary 3.4.4.1. There is an equivalence of categories M
bal
⊗
C
N ' BiBal(Vec,C)(M ,N).

Proof. Every left or right C-module category can be made a bimodule category by letting Vec
act on the other side. By the proof of Proposition 1.6.2 the Drinfeld center of the bimodule
category MVec

bal
⊗
C
NVec is equivalent to M

bal
⊗
C
N , so the claim follows by Proposition 3.4.4.
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Note that the naïve tensor product M ⊗ N of module categories MC and NC is naturally
a (C , C)-bimodule category by “X-ray vision”; that is X . (M ⊗ N) :� M ⊗ (X . N) and
(M ⊗ N) / Y :� (M / Y) ⊗ N .

Proposition 3.4.5. Let MC and NC be module categories. Then there is an equivalence of categories

M
bal
⊗
C
N ' Z(M ⊗ N).

Proof. Unfold the definition of both objects.

Proposition 3.4.6. When C, D, M, and N are all finitely semisimple the category BiBal(D ,C)(M ,N)
is finitely semisimple as well.

Proof. By Proposition 3.4.3 the category BiBal(D ,C)(M ,N) is equivalent to the balanced tensor
product M

bal
⊗

Dmop⊗C
N . The latter category is equivalent to the Drinfeld center of a particular

(Dmop ⊗C ,Dmop ⊗C)-bimodule category by Proposition 3.4.5, namely the ordinary naïve tensor
product M ⊗N . Since C, D, M, and N are all finitely semisimple the categories Dmop ⊗ C and
M ⊗ N are as well, so the claim follows by Theorem 1.5.8.

Theorem 3.4.7. When C, D, E, M, and N are all finitely semisimple there is a (D , E)-bimodule
equivalence between the balanced tensor product MD

bal
⊗
C
NE and Deligne’s tensor product MD �

C
NE .

Proof. When MD C and NC E are not merely respectively right and left C-module categories then
the functor category [ M∗

C → NC ] is made a (D , E)-bimodule category by “acting pointwise”.
For F : M∗

C → NC a module functor this just means that (Y . F)(M) :� F(M / Y∗ ) and
(F / Z)(M) :� F(M) / Z. By Proposition 3.5 of [11] together with Remark 3.6 following it1 (see
also [8]) in this situation there is an equivalence M �

C
N ' [ M∗

C → NC ] of (D , E)-bimodule
categories. On the other hand, we observe an obvious right E-module functor structure on the
equivalence P of Proposition 3.3.2 as a consequence of elementary properties of direct sums.
Fixing Y ∈ D, M ∈ M, N ∈ N , and K ∈ M∗ we also see a left D-module functor structure as a
consequence of Proposition 3.1.5, which provides an isomorphism

P( LD (Y)(M ⊗ N))(K) � M(K → Y . M)N → M(K / Y∗ → M)N � (Y . P(M ⊗ N))(K).

It is easy to see that these module functor structures are compatible and turn P into a bimodule
functor (this is exactly asserted by Proposition 3.1.7). The claim follows by composing P with
the functor to Deligne’s tensor product above and appealing to the module category variant of
Proposition 1.2.16.

Of course by taking D � Vec or E � Vec (or both) we obtain analogous results for balanced
tensor products involving module categories. We conclude by giving further consequences of
the main result Theorem 3.4.7 of this section.

Corollary 3.4.7.1. Let MC be a finitely semisimple module category over a finitely semisimple monoidal

category C. Then there is an equivalence of right C-module categories MC ' M
bal
⊗
C
CC . When M is a

(D , C)-bimodule category this is a (D , C)-bimodule equivalence.

Proof. The hypotheses ensure that Theorem 3.4.7 applies, and the same fact holds for the Deligne
product [11].

1Remark 3.5 of [9] points out that as stated [11] contains an error—it is off by a twist of the double dual functor.
Here we invoke the corrected result involving functors from the dual category M∗

C (c.f. Proposition 3.1.4).
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Corollary 3.4.7.2. Let MC C be a bimodule category. Then there is an equivalence BiBal(C ,C)(M , C) '
Z( MC C).

Proof. By Corollary 3.4.7.1 we have that MC C ' MC
bal
⊗
C
CC as (C , C)-bimodule categories,

and hence Z( MC C) ' Z(BalC(M , C)). By Proposition 3.4.4 there is a second equivalence
Z(BalC(M , C)) ' BiBal(C ,C)(M , C), so we are done by composing the equivalences.

Corollary 3.4.7.3. Let MD C and NC D be bimodule categories. Then there is an equivalence

BiBal(D ,C)(M ,N) ' BiBal(D ,D)( MD
bal
⊗
C
ND ,D).

Proof. Combine Proposition 3.4.4 with Corollary 3.4.7.2.

Remark 3.4.8. The equivalence of Corollary 3.4.7.1 can also be constructed directly. It turns out
that when C is finitely semisimple there is a canonical bibalanced object A ∈ BiBal(C ,C)(C , C),
which under the equivalence of Proposition 3.3.3 is the functor which takes left duals. The
object A arises from the so-called internal hom in module categories, when C is considered via a
flip as a left (C ⊗ Cmop)-module category. This can be thought of as an extension of Section 9.2
of [12].

3.5 Marked diagram categories for bimodule categories

In Chapter 2 the annular category for a k-linear pivotal category was defined using the general
theory of 2-dimensional diagrams in pivotal categories. On the other hand, if M is just an
ordinary k-linear category there is nonetheless a good (though perhaps rather boring) theory
of 1-dimensional diagrams in M. This is essentially just because ordinary categories have an
associative composition law.

To build the category
∫
•M of diagrams in M on the interval, we first let the objects be the

same as those of M. The vector space
(∫

•M
)
(X → Y) is then a quotient of the free vector space

on diagrams of the form

e.g. X Y
Z W

f g h with f : X → Z, g : Z → W , and h : W → Y.

That is, with finitely many morphisms in M distinguishing points in the interior of the interval,
and with the oriented open intervals separating each point being labelled with an object which
is compatible with the morphisms which it connects. Diagrams X → Y can be “evaluated”
by composing the morphisms associated to the distinguished points left-to-right, yielding an
ordinary morphism in M between the same objects X and Y. In the quotient we identify
diagrams which are isotopic in the obvious sense, where diagrams obey a linear relation,
and where one diagram is obtained from another by replacing a sub-interval with another
sub-interval which evaluates to the same ordinary morphism in M (this is the 1-dimensional
variant of local replacement—which we are very familiar with by now). It is an easy exercise to
verify that M and

∫
•M are equivalent (even isomorphic) categories.

We will leverage a slight variant of this construction to build an annular category given a
collection of compatible bimodule categories. Precisely, the input data is the following.

Definition 3.5.1. An oriented 1-manifold Ω is marked if it is equipped with finitely many
distinguished points Ω0 ⊂ Ω, such that:
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• Each distinguished point in the interior of Ω is labelled with bimodule category MD C
for some pivotal categories C and D (with all of this data varying for each distinguished
point).

• Each such labelling of a point x ∈ Ω0 \ ∂Ω is made with respect to the orientation,
diagrammatically of the form

· · · · · ·
MD C

x
,

i.e. so that both of the 1-manifolds in the complement Ω \Ω0 which are incident on x
correspond to an opposite left- or right- side of the bimodule category MD C .

• Each point x ∈ Ω0 ∩ ∂Ω is labelled by a module category, diagrammatically of the form

· · ·
MC

x
,

in analogy with the bimodule case.

• Each path component L ⊂ Ω \Ω0 is assigned a pivotal category which is compatible with
the labels of the distinguished points that meet L. Diagrammatically, we require

· · · · · ·
MD C NC EC

L
.

We use Ω̂ to denote the 1-manifold Ω equipped with this data.

Upon taking the product of a marked 1-manifold Ω̂ with I we obtain a 2-manifold Σ
Ω̂

with
1-manifolds (bulk boundaries, always closed intervals) labelling bimodule categories, separating
2-manifolds (bulks, always disks) labelled by pivotal categories. There is an immediate theory of
diagrams in such objects, which requires almost no additional explanation beyond what we have
already seen. Schematic diagrams arising from marked intervals and circles are respectively
depicted in Figure 3.5 and Figure 3.6.

In particular, a diagram drawn inΣ
Ω̂

is just a diagram in each 2-manifold bulk corresponding
to a particular pivotal category, along with a diagram drawn on each 1-manifold bulk boundary
in the respective (bi)module category to which it corresponds. The only caveat is that we permit
diagrams in the pivotal categories (the bulks) to meet the diagrams drawn in the boundary
1-manifolds at labelled points, with this changing the meaning of the associated morphism
label. For instance, in the diagrams2

and ,

2From now on we will use a single colour for the (bi)module category labels of bulk boundaries.
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C

MC

(a) 1 boundary point

CD

MD C

(b) 1 interior point

C

MC NC

(c) 2 boundary points

CD E

MD C NC E

(d) 2 interior points

Figure 3.5: Diagram categories arising from a marked I with n distinguished points, n ≤ 2.

the morphism label f should actually be a morphism X .M → N , and g should be a morphism
K → Y . L. Of course we would like to continue to consider isotopies of such diagrams, but
a problem arises when a string in (for example) the C-bulk above is able to vary its angle of
incidence with a point on the MC-bulk boundary.

Consider for example a string incident on the MC-bulk boundary depicted in the former
figure changing its angle of incidence (via an isotopy) to the local configuration as depicted in
the latter figure. The result is that the label for the distinguished point of intersection with MC
is now incorrect with respect to the labelling scheme which we have just described. The remedy
(as in the case of ordinary diagrams in a pivotal category) is to label distinguished points of the
MC-bulk boundary not with actual morphisms in M, but to instead fashion an object which
represents the morphism in an isotopy-invariant way and to use that as a label instead. In this
case we use the isomorphisms provided by rigidity (in Proposition 1.3.10) and pivotality to
freely pass between morphisms M → X . N and morphisms X∗ . M → N .

As in the case of diagrams in pivotal categories, when we draw diagrams we are perfectly
content to suppress the technical construction of labels we have made and to instead work
with ordinary morphism labels for most purposes. Finally, the bimodule associators permit us
to allow string diagrams where a string from the C-bulk and a string from the D-bulk both
intersect the same point on a given bulk boundary. In fact by Theorem 1.3.9 we can even assume
up to equivalence that all bimodule associators are the identity.

Since all of these diagrams are formed by a product with I, there is again a natural composition
law arising from juxtaposition and gluing diagrams with the same boundary labels. We also
impose an analogue for local replacement in the bulk boundaries. To state it, observe that the
right C-module category structure on MC in Figure 3.5a gives a natural evaluation map from
honest diagrams drawn in the figure to ordinary morphisms in M (this is a generalisation of
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C

(a) 0 points

CMC C

(b) 1 point

C

D

MD C NC D

(c) 2 points

C

D

EMD C

NC E

KD E

(d) 3 points

Figure 3.6: Diagram categories arising from a marked S1 with n distinguished points, n ≤ 3.

eval from Section 1.4). Essentially the only point of divergence from the ordinary evaluation of
rectangular diagrams in pivotal categories is that we must apply the functor / when evaluating
the part of the diagram drawn in the C-bulk. Similarly, if we instead have the (D , C)-bimodule
category MD C of Figure 3.5b there is again an evaluation map from diagrams drawn in the
figure to ordinary morphisms in M.

The objects of the category
∫
Ω̂

of diagrams for a marked 1-manifold Ω̂ are just boundary label
data ω for diagrams which arise from Ω̂. The morphisms

∫
Ω̂
(ω → χ) are then—as usual—the

quotient of the free vector space on all diagrams with the same boundary data by isotopy, by
local replacement inside bulks (with which are we familiar), and by local replacement on a bulk
boundary (which we have just described).

The following theorem is a straightforward generalisation of Theorem 1.4.6, asserting that a
pivotal category is equivalent to its category of diagrams.

Theorem 3.5.2. Let C and D be pivotal categories.

1. The category of diagrams of the form of Figure 3.5a associated to a module category MC is equivalent
to MC itself.

2. The category of diagrams of the form of Figure 3.5b associated to a bimodule category MD C is
equivalent to MD C itself.

If MC and NC are both module categories for a pivotal category C, the category of diagrams
of the form of Figure 3.5c is known as the associated ladder category3 LadC(M ,N) [2]. If the
module structures on M and N respectively extend to (D , C)- and (C , E)-bimodule category

3The notion of a ladder category for a pair of module categories over any monoidal category C also makes (purely
algebraic) sense. However, when C is pivotal the typical algebraic construction is equivalent to the diagrammatic
one we give here (and this is easy to check). Thus we identify the two notions here without any concern.
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structures, then we can form the category of diagrams of the form of Figure 3.5d. This category
is itself naturally a (D , E)-bimodule category by juxtaposition of rectangular diagrams in D on
the left and E on the right, and we denote it by LadC(M ,N)D E . One reason ladder categories
are of interest is the following folklore result, which we will posses the tools to give a proof of in
the next section.

Theorem 3.5.3. If C, D, E, M, and N are all finitely semisimple the Deligne product MD �
C
NE is

equivalent to LadC(M ,N)D E as a (D , E)-bimodule category.

Now turning to marked copies of S1, Figure 3.6 schematically represents so-called annular
categories for various numbers of bimodule categories. The diagram category for Figure 3.6a is
the case of zero bimodule category labels, and recovers precisely the ordinary annular category∫

S1 C which we studied in Chapter 2. We will be particularly interested in the diagram categories
for Figures 3.6b and 3.6c, which we will denote respectively by

∫
S1 MC C and

∫
S1( MD C , NC D).

The “higher valence” punctures of the kind of Figure 3.6d and (their associated categories of
representations) are directly relevant in the study of topological phases of matter (where they
are closely related to so-called point defects4).

It will sometimes be convenient to replace M ⊗ N with its full subcategory M ⊗pure N
consisting only of those objects which are a pure product M ⊗ N with M ∈ M and N ∈ N (i.e.
and not a formal direct sum of such objects). This is mainly because the category

∫
S1( MD C , NC D)

does not have direct sums in general, which is intuitively for the same reason that M ⊗pure N
does not either. Of course there is also a corresponding full subcategory BiBalpure

(D ,C)(M ,N) of
BiBal(D ,C)(M ,N) of the objects which forget to pure products in M ⊗ N , but in general restoring
direct sums with Mat

(
BiBalpure

(D ,C)(M ,N)
)

will yield a category smaller than BiBal(D ,C)(M ,N).
As in Chapter 2 we will assume that End(1C) � k � End(1D) from now on.

Proposition 3.5.4. There is an essentially surjective faithful inclusion functor J : M ⊗pure N →∫
S1( MD C , NC D).

Proof. The construction is parallel to Proposition 2.2.2, and we will see later that we are actually
giving a generalisation. First, we can view a morphism f : M ⊗ N → K ⊗ L as a morphism in∫

S1( MD C , NC D) by taking a representative of f as a sum of morphisms in M ×N , and then
using the equivalences between M and N and their respective categories of 1-dimensional
diagrams

∫
•M and

∫
•N . Diagrammatically, this is just the inclusion

( f : M → K) ⊗ (g : N → L) 7−→
f g

LNK M

with no diagram drawn in either the C or D bulks. We will omit the orientation of the edges
labelled by objects from now on, as we did in the pivotal case. Note that while the category∫

S1( MD C , NC D) does not have direct sums it nonetheless has vector space homsets and sums of
morphisms, so we can freely extend this definition to formal sums of morphisms.

4See Definition 8 of [4] and the references therein.
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In
∫

S1 C the boundaries of arbitrary annular diagrams were isomorphic to boundaries labelled
by only a single object, we can similarly regularise objects of

∫
S1( MD C , NC D). Given an arbitrary

boundary for example of the form depicted in Figure 3.7a (with some C- and D-object labels
suppressed on the blue and red points) we always have an isomorphism to a boundary which
only has labels on the bimodule category parts, i.e.

M N

(a)

M / X Y . NM N

(b)

Figure 3.7: An arbitrary object in
∫

S1( MD C , NC D) and its isomorphism to the image of J.

Here each distinguished point on the bulk boundaries is labelled with an identity morphism,
and X and Y are tensor products of objects respectively labelling the blue C-line and red
D-line of the boundary of Figure 3.7a. It is easy to see that each such morphism of this
kind is an isomorphism, having an inverse obtained by just “turning the annulus inside out”.
This establishes essential surjectivity of J. Finally, J is faithful by the direct extension of
Proposition 2.3.3 to the marked case.

Using the inclusion functor J, we can now build representations of
∫

S1( MD C , NC D) from
bibalanced objects.

Proposition 3.5.5. There is a functor B : BiBal(D ,C)(M ,N) → Repop
∫

S1( MD C , NC D).

Proof. We produce what amounts to a generalisation of the faithful functor from Proposition 2.3.1.
So that we are not overwhelmed by indices, we first handle the case of pure objects; fix
(S, τX , σY) ∈ BiBalpure

(D ,C)(M ,N) and write S � M ⊗ N (by hypothesis S is of this form). For each
T ∈

∫
S1( MD C , NC D) there is a vector space of diagrams J(S) → T, and we declare the vector

space V(T) � B(S, τX , σY)(T) to be a particular quotient. To specify the relation, suppose that in
a neighbourhood of the inner puncture of some diagram D : J(S) → T we locally encounter
the configuration of Figure 3.8a. Then in this situation we permit a local replacement to the
diagram depicted in Figure 3.8b for some morphisms fX and gX .



§3.5 Marked diagram categories for bimodule categories 79

(a) (b)

Figure 3.8: The local replacement relation in B(S, τX , σY) for the balancing τX .

We in turn produce the morphisms fX and gX by observing that the balancing τX is in this
situation a morphism (M / X) ⊗ N → M ⊗ (X . N), hence precisely a product fX ⊗ gX . The
balancing σY for the D-marked bulk similarly gives a relation for resolving identity strings in a
neighbourhood of the annular puncture to morphisms in the image of the functor J. These are
the two additional relations—one for each balancing—which we impose in order to define the
representation B(S, τX , σY) on each T ∈

∫
S1( MD C , NC D).

Geometrically, one should imagine that the balancings τX and σY together give a way to lift
the arc of Figure 3.8a and the dual picture for the D-marked region off the plane of the page,
instead passing directly up and over the diagram, as depicted below.

(3.5.1)

From the perspective of the plane, only the two vertices where each 3-dimensional arc meets the
plane (e.g. labelled by fX and gX for the blue arc) can actually be seen.

This defines a representation V of
∫

S1( MD C , NC D) on the objects. The definition of the
representation on morphisms now follows Proposition 2.3.1 closely. That is, morphisms
h : T → U in

∫
S1( MD C , NC D) induce maps by gluing around the outer boundary of diagrams

D : J(S) → T. Each such linear map descends to a map of quotients V(h) : V(T) → V(U) exactly
because the balancings satisfy the associativity constraint (3.2.1) (in direct analogy with the
half-braiding axiom invoked in the Z(C) case), in addition to the bibalancing compatibility
condition we also require. In particular, since the two arcs of (3.5.1) can be slid past one another
on the surface of the annulus, we must ensure that they may also be slid past one another after
being lifted off the surface.

Morphisms h : (S, τX , σY) → (S′, κX , ρY) of bibalanced objects similarly give rise to rep-
resentation intertwiners B(S′, κX , ρY) → B(S, τX , σY) by gluing on the inside of annuli (as in
Proposition 2.3.1). The intertwiners are natural in each component for the same reason as the
Z(C) case, and thus we obtain a definition of the functor B on BiBalpure

(D ,C)(M ,N).
In the case of arbitrary (S, τX , σY) ∈ BiBal(D ,C)(M ,N), there is a straightforward generalisa-

tion of this construction. For each T ∈
∫

S1( MD C , NC D) we let B(S, τX , σY)(T) report a quotient
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of the direct sum of the vector spaces of morphisms J(Si) → T as Si ranges over the formal
summands of S. The quotient relation of Figure 3.8 is now defined by asserting equalities of
formal direct sums of diagrams arising from the balancings τ and σ (since the components of τ
and σ are now morphisms of formal direct sums), but otherwise is the exactly the same.

Now let h :
⊕

i Si →
⊕

j S′
j be a morphism between formal direct sums coming from

a morphism (S, τX , σY) → (S′, κX , ρY) in BiBal(D ,C)(M ,N). Thus h splits into components
hi , j : Si → S′

j . The action of B(h) is to map the summand of B(S′, κX , ρY) corresponding to S′
j

into the summand of B(S, τX , σY) corresponding to Si by gluing fi , j around the inner boundary
of the annular diagrams. This construction is well defined in the quotient for the same reason as
in the pure case above, so this completes the proof.

In the next section it will be important to consider morphisms in
∫

S1( MD C , NC D) solely of
the form depicted in Figure 3.8a, and dually with a single string in the red D-bulk. Thus we let
rCX,M,N denote the morphism depicted in Figure 3.8a for each X ∈ C, M ∈ M, and N ∈ N , and
similarly let rDY,M,N be the dual morphism with Y ∈ D.

Remark 3.5.6. There are a number of parallels between the construction of the functor B of
Proposition 3.5.5 and the construction of the functor G of Proposition 2.3.1. This is due to an
underlying geometrical relationship which we now briefly mention.

Let MC C be a (C , C)-bimodule category. Then equipping C itself with its natural (C , C)-
bimodule category structure, we can form the diagram category

∫
S1( MC C , CC C). But since in this

diagram category C is straddled on both sides by C-bulks and each C action on C is the natural
one, there is a canonical map which just forgets about the distinguished CC C-bulk boundary
and regards it as just another string in the C-bulk. This gives an equivalence between the
categories

∫
S1( MC C , CC C) and

∫
S1 MC C . Viewed under this correspondence, the construction of

Proposition 3.5.5 can be interpreted as performing the following sequence of geometric moves,
which we describe below.

First, each balancing in BiBal(C ,C)(M , C) can be used to pull a blue arc into the space above the
plane of the page. The two distinguished points on the interior of the CC C-boundary can then
be brought together and the CC C-boundary can be forgotten about, resulting in the situation
depicted in the middle figure. Next, the lack of a CC C-boundary permits the single labelled
blue point on the interior of the blue C-bulk to isotoped around the bulk and coalesced with
one of the green distinguished points on the MC C-line. Finally the two green points may be
brought together, resulting in a single little loop emerging from one side of the lone green point,
passing above the plane of the diagram and over the green MC C-line, and re-entering the green
point on the other side.

Further specialising to the case M � C, naturality of the balancing natural isomorphisms we
have just described mean that we can interpret this move as exactly pulling a blue string through
the annular puncture. That is, precisely the geometric move we permitted when defining
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the functor G : Z(C) →
∫

S1 C of Chapter 2. Thus we see that Proposition 3.5.5 is actually a
generalisation of Proposition 2.3.1 in a strict sense.

The observation that the diagram categories
∫

S1( MC C , CC C) and
∫

S1 MC C are equivalent
implies that their categories of representations are also equivalent, so in fact we will be able
obtain a correspondence between the diagram category Z( MC C) and the representations of∫

S1 MC C as a corollary of the main result of the next section.

3.6 Diagrammatic consequences of finite semisimplicity

Let MD C and NC D be finitely semisimple bimodule categories for pivotal categories C and D.
In order to prove an equivalence between Repop

∫
S1( MD C , NC D) and BiBal(D ,C)(M ,N) we will

again require a key but geometrically intuitive factorisation lemma (c.f. Lemma 2.2.3).

Lemma 3.6.1 (Generalised annular factorisation). Every morphism d : J(M ⊗ N) → J(K ⊗ L) in∫
S1( MD C , NC D) is represented by a diagram of the form

idid
idid

M NK L

X

Y

f g
(3.6.1)

with X ∈ C, Y ∈ D, and morphisms

f : Y∗ . (M / X∗) → K and g : (X . N) / Y → L.

That is, the morphism d is a composite

d � J( f ⊗ g) ◦ rDY,M/X∗ ,X.N ◦ rCX,M,N

Proof. The claim follows by performing successive geometric manipulations. To spell them
out, fix a representative of a morphism d : J(M ⊗ N) → J(K ⊗ L). Then points where strings
in the C- or D-bulk intersect the MD C-boundary may be slid past one another because of the
bimodule middle associativity constraint. The associator for the tensor products in C and D
along with the module associators for M on each side then permit us to “pinch-off” bundles
of C- or D-bulk strings which are incident on the MD C-boundary and coalesce them into a
single string. Thus we can arrange a representing diagram for d which agrees with (3.6.1) in
a neighbourhood of the MD C-boundary. The only potential difficulty is that a point where a
string from the C- or D-bulk intersects the MD C-boundary could be labelled with a non-identity
morphism. However, we can always resolve this problem by writing such a morphism as
an identity composed on one side with the morphism itself (thus pushing the non-identity
morphism further down the MD C-boundary, away from the point of intersection).

Of course we can then also do the same for the NC D-boundary. The complement of these
two neighbourhoods of the MD C- and NC D-boundaries just consists of a string diagram in the
C-bulk and a string diagram in the D-bulk, and hence both can be locally replaced with a single
labelled point with some number of incoming strings. But we arranged that the C-bulk and
D-bulk were each incident on the MD C- and NC D-boundaries at precisely one point, so by local
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replacement we can coalesce the C- and D-bulk diagrams each into a single point with only two
incident strings each. The result is a diagram precisely of the form (3.6.1) with the exception of
having a single point on the interiors of both the blue and red strings which is labelled with a
potentially arbitrary morphism. However, we can again slide these points down their respective
strings and into one of the bulk boundaries (making yet another arbitrary choice). There we
perform a local replacement using pre-composition with the identity to coalesce each into a
bulk boundary, while keeping the label of the point of intersection with each C- and D-bulk the
identity. We arrive at a representative of d with the claimed form (3.6.1).

While slightly cumbersome to state, Lemma 3.6.1 is especially powerful because the
functor J is essentially surjective. In fact it follows immediately that every representation
V :

∫
S1( MD C , NC D) → Vec is completely determined by its values on rC , rD , and the image of

the functor J.
We now reduce this data further by exploiting the hypothesis of finite semisimplicity of

M and N . In this situation the naïve product M ⊗ N is itself finitely semisimple as well (c.f.
Proposition 1.1.13). We would then like the inclusion functor J to restrict V to a representation
of M ⊗ N , but this is not quite possible since J does not admit an extension from M ⊗pure N to
M ⊗ N . The following lemma indirectly resolves this dilemma.

Lemma 3.6.2. Let A be any (k-linear) category. Then the categories RepA and Rep MatA are
equivalent.

Proof. First note that every representation V : A → Vec extends to a representation V of MatA
just because Vec has direct sums; one sets V(

⊕
i Ai) :�

⊕
i V(Ai). Letting D : A → Mat(A) be

the obvious inclusion, there is a natural isomorphism V � V ◦ D.
Now, it can be seen directly that the conditions defining a direct sum in any k-linear category

are preserved by every linear functor. Hence if W : MatA → Vec is a representation there is an
isomorphism W(

⊕
i Ai) �

⊕
i W(Ai) natural in all of the summands Ai ∈ A. It follows that W

is recovered up to natural isomorphism from its restriction W ◦ D upon taking the extension of
W ◦ D to MatA. It is easy to see that these families of natural isomorphisms assemble into an
equivalence of categories.

Of course J does admit an extension to a functor M ⊗ N → Mat
∫

S1( MD C , NC D) into the
direct sum completion (which we call by the same name J). Thus, suppressing the equivalence of
Lemma 3.6.2 we obtain a representation V◦ J of the semisimple categoryM⊗N . Proposition 2.1.5
then produces an object S ∈ M ⊗N which represents V ◦ J. Up to natural isomorphism V(J(T))
is the vector space (M ⊗ N)(J(S) → J(T)) for all T ∈

∫
S1( MD C , NC D), so essential surjectivity

of J means that V is completely determined on the objects by S. Also, the Yoneda lemma asserts
that on morphisms in the image of J the representation V is completely fixed as well—V acts
just by post-composition.

In order to speak in convenient terms about representations of the direct sum completion,
for each S �

⊕
i Mi ⊗ Ni ∈ M ⊗ N we define

rCX,S �

⊕
i

rCX,Mi ,Ni
and rDY,S �

⊕
i

rDY,Mi ,Ni
.

Here the direct sum of morphisms is taken to specify a diagonal matrix in the direct sum
completion.

Lemma 3.6.3. Let V :
∫

S1( MD C , NC D) → Vec be any representation which when restricted to a
representation of M ⊗ N is represented by S ∈ M ⊗ N . Then given any morphism h : S → T and
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objects X ∈ C and Y ∈ D we have

V(rCX,T)( f ) � ( RC (X∗) ◦ LC(X))(h) ◦ V(rCX,S)(idS), and

V(rDY,T)( f ) � (RD( Y∗ ) ◦ LD (Y))(h) ◦ V(rDY,S)(idS).

Proof. For each pair of morphisms f : M → K and g : N → L there is an equality up to isotopy
of the diagrams

idid
X . gf / X∗

M NK / X∗ X . L

X

and
gf

idid
M NK / X∗ X . L

X

.

Hence the claim follows by functoriality of V as in the proof of Lemma 2.2.4.

Thus a representation V : Mat
∫

S1( MD C , NC D) → Vec which is represented by S ∈ M ⊗ N
when restricted to M ⊗ N is completely determined in general by the morphisms V(rCX,S)(idS) :
S → ( RC (X∗) ◦ LC(X))(S) and V(rDY,S)(idS) : S → (RD( Y∗ ) ◦ LD (Y))(S) for all X ∈ C and
Y ∈ D. By Frobenius reciprocity for module categories (Proposition 1.3.10) these are families of
morphisms

τX : LC(X)(S) → RC (X)(S),
σY : LD (Y)(S) → RD(Y)(S), (3.6.2)

which by analogy with Chapter 2 one should expect assemble into compatible balancings of the
object S. Indeed, we have the following.

Proposition 3.6.4. There is a faithful functor C : Repop Mat
∫

S1( MD C , NC D) → BiBal(D ,C)(M ,N).

Proof. Given a representation V : Mat
∫

S1( MD C , NC D) → Vec, let S ∈ M⊗N represent V when
restricted using J. Then procure associated families of morphisms τX : LC(X)(S) → RC (X)(S)
and σY : V(rDY,S)(idS) : LD (Y)(S) respectively from V(rCX,S)(idS) and V(rDY,S)(idS) using Frobenius
reciprocity.

The verification that these families actually define compatible balancings now largely follows
the strategy of Section 2.3, so we will just explain where we depart from the development given
there. In particular, we are able to mirror the corresponding diagrammatic arguments via our
generalisation Lemma 3.6.3 of Lemma 2.2.4.

First, the claim that each component τX is an isomorphism is verified by considering the
diagram depicted in Figure 3.9a. Since C-bulk strings intersect the NC D-boundary at points
labelled by the identity, we may bring the two points of intersection together and then separate
the C-bulk string from the NC D-boundary altogether by a local replacement. The result is the
diagram depicted in Figure 3.9b.

The free loop in the C bulk can now be retracted into the MD C-boundary, and since its
points of intersection are again labelled by identity morphisms the loop annihilates on contact
(or really, is excised by a final local replacement). The result is the identity morphism (in the
image of J), and witnesses that τX has a one-sided inverse. The natural corresponding diagram
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idid idid
M NM N

X
X∗

(a)

idid
M NM N

X
X∗

(b)

Figure 3.9: The diagram manipulation asserting that each component τX is an isomorphism.

with the C-bulk arcs interchanged and same argument also shows that τX has an inverse on the
other side as well, as desired.

The fact that the components τX assemble into a natural transformation follows for each
f : X → Y by comparing the diagrams of Figure 3.10. Just using local relations the M / f ∗

morphism on the MD C-boundary of Figure 3.10a may be “sucked-up” into the arc in the C-bulk
via a local replacement, whence it can be transferred to a neighbourhood of the NC D-boundary
via a second local replacement (as in Figure 3.10b). The result might not look like a naturality
relation at first glance because f is “on the same side” of the C-bulk arc in both cases, but this is
precisely due to the application of Frobenius reciprocity used to define each component τX .

idid
M / f ∗

M NM / X∗ Y . N

Y

(a)

idid
f . N

M NM / X∗ Y . N

X

(b)

Figure 3.10: The diagram manipulation asserting that the components τX are natural.

The natural transformation τX obeys the balancing associativity constraint (3.2.1) just because
the morphism represented by the two diagrams

idid idid
M NM N

X
Y

and
id id

M NM N

X ⊗ Y

is the same.
Of course, a completely analogous argument shows that the components σY assemble into a

Dmop-balancing of the object S as well. The bibalancing compatibility constraint (3.2.2) for the
balancings τX and σY follows from sliding the identity-labelled arcs in the C- and D-bulks in
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(3.5.1) past one another (a move which we are accustomed to making by now).
All of this defines a functor C : Repop Mat

∫
S1( MD C , NC D) → BiBal(D ,C)(M ,N) on the

objects. To define C on the morphisms, let η : V → W be a representation intertwiner with
V and W represented by objects S and T of M ⊗ N respectively. By the Yoneda lemma η is
just pre-composition with a fixed morphism f : T → S on every homset; we set C(η) � f , and
faithfulness follows from Corollary 2.1.6.1. The claim that f is a morphism of bibalanced objects
is verified by drawing the naturality square for η analogous to (2.2.6); the only material change
is substitution of the natural isomorphism r with our generalisations rC and rD .

Theorem 3.6.5. Let MD C and NC D be finitely semisimple bimodule categories over pivotal categories
C and D with End(1C) � k � End(1D). Then the functors B and C together give an equivalence of the
categories BiBal(D ,C)(M ,N) and Repop

∫
S1( MD C , NC D).

Proof. Most of the work is completed by performing the analogous technical reduction described
at the beginning of the proof of Theorem 2.3.5. In particular, we get to assume that representa-
tions of

∫
S1( MD C , NC D) all restrict to actual hom-functors. Together with our generalisation

Lemma 3.6.3 of Lemma 2.2.4—which gives a formula to calculate with representations of this
kind—we can build the corresponding chain of equalities (2.3.2). It then just remains to invoke
another knot-theoretic result, which we now describe.

The situation is that we have a representation V ∈ Rep
∫

S1( MD C , NC D) and an object
(S, τX , σY) :� C(V) (in particular V is represented by S). We need to show that for all
T ∈

∫
S1( MD C , NC D) the inclusion J induces an injective map from the vector space of morphisms

S → T into the quotient defining B(S, τX , σY)(T). We do this by explicitly constructing an
inverse. Given a diagram in

∫
S1( MD C , NC D), fix a radial line segment L emanating from the

inner puncture and passing through the interior of the C-bulk, before intersecting the outer
boundary of the annulus. Assume that the strings drawn on the diagram intersect L at all points
transversely, and note that the C-bulk is separated into two halves by L. The balancing τX then
gives a way to cut all of the strings which intersect L and retract the resulting pair of diagrams
drawn in each half of the C-bulk into the bulk boundaries (we visualised this before as lifting
the strings off the surface of the plane).

Performing the analogous process for the D-bulk using the balancing σY and another line
L′, we obtain a morphism f in the image of the faithful functor J and hence a candidate for
the definition of an inverse. Thus the only question is whether this map is well-defined, being
independent of the choice of L and L′ and invariant under isotopy and local replacement of the
representing diagram. By Theorem 3.5.2 invariance under local replacement in the interior of
the bulks is verified, as is invariance under isotopy away from a neighbourhood of the cut lines
L and L′. It remains to see that we also have invariance of f whenever there is an isotopy of the
marked annulus in which strings are permitted to move underneath the L and L′ lines.

This final fact can be proved by appeal to a Reidemeister-type result similar to Theorem 2.3.6,
which we do not give again (in this case there are two distinguished lines, but very little else has
changed). We simply assert that the kinds of singularities which can arise in the C- and D-bulks
under a global isotopy of the marked annulus are resolved precisely because the balancings
τ and σ are isomorphisms, are natural, each obey the associativity constraint, and (now in
addition) obey the bibalancing compatibility constraint. The fashion in which singularities are
resolved is the same as in Theorem 2.3.6. The bibalancing constraint can be interpreted here as
ensuring that pairs of singularities which occur simultaneously on the cut lines L and L′ can be
resolved one-by-one in either order. This completes the proof.

Corollary 3.6.5.1. Let MC C be a finitely semisimple bimodule category over a pivotal category C with
End(1C) � k. Then the categories Z( MC C) and Repop

∫
S1 MC C are equivalent.
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Proof. We described an equivalence∫
S1( MC C , CC C) '

∫
S1 MC C

in Remark 3.5.6. Taking Repop of both sides, the claim follows by combining this result with
Theorem 3.6.5 and appealing to Corollary 3.4.7.2.

Finally, note the equivalence of diagram categories LadC(M ,N) '
∫

S1( MVec C , NC Vec) which
arises from the fact that diagrams in a Vec bulk can be taken to be blank. Thus we obtain an
equivalence by just cutting the annulus along the Vec bulk (see Figure 3.11 below). In fact,
whenever C, M, and N are all finitely semisimple, the category LadC(M ,N) of Theorem 3.5.3
is finitely semisimple as well. Thus LadC(M ,N) is equivalent to its category of representations
by Proposition 2.1.5, and so Theorem 3.4.7 implies that the ladder category and balanced
tensor product are equivalent (when the theorem applies). Hence in fact we obtain a proof
of Theorem 3.5.3 via Theorem 3.4.7. There is also a purely algebraic ladder category, and it
is not difficult to see how to modify the constructions of this chapter to build an analogous
equivalence with it, but this would take us too far afield.

3.7 Catalogue of diagram kirigami

Below we depict various diagram kirigami5 and their algebraic consequences when Theorem 3.6.5
applies.

Figure 3.11 corresponds to the equivalence of Corollary 3.4.4.1 arising because every
diagram in a Vec-bulk can be made blank. Proposition 3.4.5 gives the analogous result under
the correspondence Proposition 3.4.5 between the balanced tensor product and the Drinfeld
center. Figure 3.12 corresponds to Proposition 3.4.4 or, in reverse, Corollary 3.4.7.3. Figure 3.13
directly corresponds to Proposition 3.4.3 (one thinks of diagrams in C ⊗ Dmop as a diagrams in
C and Dmop superimposed on one another). Figure 3.14 corresponds to Corollary 3.4.7.2 and is
related to the observation we made in Remark 3.5.6.

As an illustration of the power of the diagrammatic viewpoint we also include Figure 3.15,
which corresponds to the ordinary algebraic fact that the categories BiBal(D ,C)(M ,N) and
BiBal(C ,D)(N ,M) are equivalent (which we did not explicitly record above).

" Vec C

NC

MC

C"

NC

MC

Figure 3.11: BiBal(Vec,C)(M ,N) ' M
bal
⊗
C
N

5Kirigami is a variation of origami where cutting and folding of the paper is allowed.
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C D

MD C

NC D

stretch C

D

MD C NC D

Figure 3.12: Z( MD
bal
⊗
C
ND) ' BiBal(D ,C)(M ,N)

C

D

f o
ld

fo
ld

MD C NC D
C ⊗ Dmop

MC⊗Dmop NC⊗Dmop

Figure 3.13: BiBal(D ,C)(M ,N) ' M
bal
⊗

C⊗Dmop
N

C

C

MC C CC C CMC C

Figure 3.14: BiBal(C ,C)(M , C) ' Z( MC C)

C

D

rotate

MD C NC D

C

D

MD CNC D

Figure 3.15: BiBal(D ,C)(M ,N) ' BiBal(C ,D)(N ,M)
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Chapter 4

The bibalanced center of a
bimodule category

In this chapter fix MC D a (C ,D)-bimodule category with C and D rigid. Using the BiBal
construction of Chapter 3, we define a generalised Drinfeld center for bimodule categories.

Definition 4.0.1. The bibalanced center Zbibal( MC D) of M is the category BiBal(D ,C)( M∗ ,M),
with the dual M∗ defined as in Proposition 3.1.4.

It is the purpose of this chapter to explore the natural monoidal structure on Zbibal( MC D),
which parallels the monoidal structure on the ordinary Drinfeld center Z(C). Indeed, the
monoidal equivalence ofZ(C) and End( CC C) of Proposition 1.7.2 is analogous to the comparison
functor P : Zbibal( MC D) → [ MC D → MC D] � End( MC D) of Proposition 3.2.6 (note that
( M∗ )∗ ' M).

We extend the analogy by showing that in this case P is naturally a monoidal functor, and
hence that when M is finitely semisimple P is a monoidal equivalence as well (a consequence of
Proposition 3.3.3). This is consistent with the Drinfeld center being a downward arrow (hence
producing a monoidal category from a category) in Baez and Dolan’s periodic table1 of k-tuply
monoidal n-categories.

We also built a functor B : Zbibal( MC D) → Repop
∫

S1( M∗D C , MC D) in Proposition 3.5.5.
The category

∫
S1( M∗D C , MC D) can be interpreted as consisting of diagrams of the form depicted

in Figure 4.1a, i.e. where the left bulk boundary is considered oriented opposite to our previous
convention, being labelled by MC D as well (as opposed to the dual M∗ ).

C

D

MC D MC D

(a)

C

D

MC D MC D

(b)

Figure 4.1: Morphisms of
∫

S1( M∗D C , MC D) and the induced tensor product.

Just as we could interpret the tensor product ofZ(C) as arising from inserting representations
of

∫
S1 C into doubly punctured disks (see Chapter 2), there is a similar interpretation of the

1This is Table 1 of [1].

89
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monoidal product of Zbibal( MC D) as inserting representations of
∫

S1( M∗D C , MC D) into the
striped regions of Figure 4.1b. We conclude by mentioning how additional algebraic structures
on Zbibal( MC D) come from similar geometric constructions.

4.1 A monoidal structure on the bibalanced center

The k-linear structure of M together with the hom-pairing Hom : Mop ⊗ M → Vec readily
gives rise to a product on the category Mop ⊗ M; we simply assemble the tensor product
(suppressing reassociation)

(Mop ⊗ M) ⊗ (Mop ⊗ M)
(Mop Homop)⊗M
−−−−−−−−−−−−−→ Mop ⊗ M , (4.1.1)

and this gives a functorial way to multiply any S, T ∈ Mop ⊗ M. The choice of tensor factor on
which Homop acts is arbitrary, but may be freely commuted up to natural isomorphism.

In general this product does not extend to a monoidal structure on Mop ⊗M (the product
need not be unital), but it does at least give rise to the structure of a semimonoidal category.

Definition 4.1.1. A category C equipped with an associator satisfying the associativity constraint
of Definition 1.2.1 (but with no unit or unitors) is a semimonoidal2 category.

Just as a monoidal category categorifies a monoid, a semimonoidal category categorifies
a semigroup. The next proposition establishes that the relationship between monoids and
semigroups—namely that a monoid is the data of a semigroup satisfying a property—is
preserved in the categorical world.

Proposition 4.1.2. The unit object of a monoidal category is defined by a universal property which
makes the data of a unit object unique up to unique isomorphism.

Proof. This follows from Proposition 2.2.6 of [12] and the subsequent remarks.

We will build an associator for (4.1.1) from the following lemma.

Lemma 4.1.3. There are canonical natural isomorphisms (with M1 ∈ Mop, M2 ∈ M, and V ∈ Vec)

δM1 ,M2 ,V : M(M1 → M2 � V) ∼−−→ M(M1 → M2) ⊗ V,

and (additionally with N1 ∈ Mop and K,N2 ∈ M)

γK,N1 ,N2 ,M1 ,M2 : (K � M(N1 → N2)) � M(M1 → M2)
∼−−→ K � M(N1 → N2 � M(M1 → M2)).

Proof. We observe that Vec is a symmetric pivotal category, and that M is made a (Vec,Vec)-
bimodule category by the copower operation of Proposition 2.1.4. The natural isomorphism δ
can then be assembled from the composite of isomorphisms

δM1 ,M2 ,V : M(M1 → M2 � V) ∼−−−−−−→ M(M1 � V∗ → M2)
∼−−−−−−→ Vec(V∗ → M(M1 → M2))
∼−−−−−−→ Vec(1→ M(M1 → M2) ⊗ V∗∗)
∼−−−−−−→ Vec(1→ M(M1 → M2) ⊗ V)
∼−−−−−−→ M(M1 → M2) ⊗ V. (4.1.2)

2We overlook the term semigroup category for this purpose, since corrupted phraseology such as semigroupoidal
functor is confusing.
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Then γK,N1 ,N2 ,M1 ,M2 ,V may be constructed via (again using natural isomorphisms)

(K � M(N1 → N2)) � M(M1 → M2)
∼−−−−−−−−−−−−−−−→ K � (M(N1 → N2) ⊗ M(M1 → M2))

K�δ−1
N1 ,N2 ,M(M1→M2)−−−−−−−−−−−−−−−→ J � M(N1 → N2 � M(M1 → M2)).

Proposition 4.1.4. The product (4.1.1) is naturally equipped with an associator isomorphism which
turns Mop ⊗ M into a semimonoidal category.

Proof. Denote the product by � : (Mop ⊗ M) ⊗ (Mop ⊗ M) → Mop ⊗ M; now fix objects
K1 ,M1 ,N1 ∈ Mop and K2 ,M2 ,N2 ∈ M. We just directly calculate that (suppressing the notion
for copowers and tensor products of vector spaces)

((K1 ⊗ K2) � (N1 ⊗ N2)) � (M1 ⊗ M2) � (K1M(K2 → N1) ⊗ N2) � (M1 ⊗ M2)
� (K1M(K2 → N1))M(N2 → M1) ⊗ M2

and similarly

(K1 ⊗ K2) � ((N1 ⊗ N2) � (M1 ⊗ M2)) � (K1 ⊗ K2) � (N1M(N2 → M1) ⊗ M2)
� K1M(K2 → N1M(N2 → M1)) ⊗ M2.

Thus we may build a component αK1⊗K2 ,N1⊗N2 ,M1⊗M2 of the associator by tensoring the natural
isomorphism γ of Lemma 4.1.3 on the left with M2, obtaining3

(K1M(K2 → N1))M(N2 → M1) ⊗ M2
γK1 ,K2 ,N1 ,N2 ,M⊗M2
−−−−−−−−−−−−−→ K1M(K2 → N1M(N2 → M1)) ⊗ M2.

The result is a natural isomorphism α.
In principle the pentagon associativity axiom for α can be verified by drawing a large

commutative diagram, but this obscures the underlying pair of coherence results at play. The
first is that all morphisms from (· · · (K1 � V1) � V2) � · · · ) � Vn to a fixed reassociation, which
were built from the associator in Vec and the associator for the Vec module action, are equal.
This follows from the coherence theorem for bimodule categories Theorem 1.3.9. The second is
that the analogous coherence result holds for all products

(· · · (M(M1 → N1) ⊗ M(M2 → N2)) ⊗ · · · ) ⊗ M(Mn → Nn)

and all reassociations made from the symmetric braiding and associator in Vec, possibly using
the copower adjunction to move these products inside each other. For instance, we can build a
morphism (

M(M1 → N1) ⊗ M(M2 → N2)
)
⊗ M(M3 → N3)

−→ M
(
M1 → N1 � M

(
M2 → M(M3 → N3) � N2

) )
,

and any scheme to do so gives the same morphism.

In fact, when M is finitely semisimple the product � on Mop ⊗M is unital, and so Mop ⊗M
3Certainly not every object of Mop ⊗M is of the form M ⊗ N , but every object Mop ⊗M is isomorphic to a direct

sum of such objects.
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becomes a monoidal category. Thus henceforth again suppose that M is semisimple with finite
collection of distinguished simple objects {Xi}.

Proposition 4.1.5. The semimonoidal category Mop ⊗ M admits a unit with compatible unitor
isomorphisms which turn Mop ⊗ M into a monoidal category.

Proof. Define the monoidal unit by the direct sum

1 :�
⊕

i

Xi ⊗ Xi .

Given a simple object X j ⊗ Xk of Mop ⊗ M we can compute

1 � (X j ⊗ Xk) �
©«
⊕

i

Xi ⊗ Xi
ª®¬ � (X j ⊗ Xk)

�

⊕
i

XiM(Xi → X j) ⊗ Xk

from which after choosing an isomorphism ψ j : 1 → M(X j → X j) we can build a left unitor
component lX j⊗Xk : 1 � (X j ⊗ Xk) → X j ⊗ Xk . These components extend to the desired natural
isomorphism by semisimplicity (explicitly, lX j⊗Xk is a composite of components of two natural
isomorphisms), and the right unitor is constructed in completely analogous4 fashion.

After unravelling the definition of the extension of the associator to direct sums and the
natural isomorphism γ from which it was constructed, the triangle identity axiom amounts to
verifying commutativity of the boundary of the following pentagon.

(Xi � M(X j → Xk)) � M(Xk → Xk) Xi � M(X j → Xk � M(Xk → Xk))

(Xi � M(X j → Xk)) � 1 Xi � M(X j → Xk � 1)

Xi � M(X j → Xk)

δXi ,Xj ,Xk ,M(Xk→Xk )

δXi ,Xj ,Xk ,1

(XiM(X j→Xk ))�ψ j

rVec
Xi�M(Xj→Xk )

XiM(X j→Xk�ψ j)

Xi�M(X j→lVec
Xk

)

The bottom triangle commutes since a similar triangle or square may be juxtaposed for each
morphism in the composite (4.1.2) defining δ. Since the upper square also commutes by
naturality of δ (given that the right and left unitors were both constructed using the same family
of isomorphisms ψ j), this completes the proof.

Now suppose that M is a left C-module category. In order to extend the monoidal product
on Mop ⊗ M to a product on M∗ ⊗ M and subsequently a category of (bi)balanced objects,
we need to observe some basic interactions between the action functors LC and RC and the
monoidal structure. Thus fix N1 ⊗ N2 ,M1 ⊗ M2 ∈ Mop ⊗ M. For any X ∈ C we have

LC(X)((N1 ⊗ N2) � (M1 ⊗ M2)) � LC(X)(N1M(N2 → M1) ⊗ M2))
� X . (N1M(N2 → M1)) ⊗ M2 ,

4So that the left and right unitors remain compatible with respect to the associator, we require that the same
isomorphism ψ j : 1→ M(X j → X j) chosen for each X j is used in the construction of each unitor.
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while

LC(X)(N1 ⊗ N2) � (M1 ⊗ M2) � (X . N1)M(N2 → M1) ⊗ M2.

Thus the natural isomorphism X . (M � V) → (X . M) � V (with V ∈ Vec) gives rise, after
extending to direct sums, to a natural isomorphism

n
LC
X,S,T : LC(X)(S � T) → LC(X)(S) � T. (4.1.3)

Similarly, we have a natural isomorphism

m
RC

X,S,T : RC (X)(S � T) → S � RC (X)(T). (4.1.4)

Lemma 4.1.6. We can always consider the monoidal category Mop ⊗ M as a bimodule category over
itself. In this situation, the natural isomorphisms (4.1.3) and (4.1.4) for each X ∈ C turn LC(X) and

RC (X) into right and left module functors, respectively.

Proof. Observe that up to an interchange of direct sums and the module action . or / the
bimodule structure is strict. The claim follows.

Although the functors LC(X) and RC (X) are not (in general) bimodule functors, we have a
natural isomorphisms which compares an application of LC(X) or RC (X) in a tensor product
“on the wrong side”:

Lemma 4.1.7. There is a natural isomorphism

rX,S,T : RC (X)(S) � T
∼−−→ S � LC(X)(T).

Proof. Unwinding the definition of M∗ , for X ∈ C, N1 ,M1 ∈ Mop, and N2 ,M2 ∈ M we have

RC (X)(N1 ⊗ N2) � (M1 ⊗ M2) � N1M(X . N2 → M1) ⊗ M2

and similarly

(N1 ⊗ N2) � LC(X)(M1 ⊗ M2) � N1M(N2 → M1 / X) ⊗ M2

� N1M(N2 → X∗ . M1) ⊗ M2.

We obtain the desired natural isomorphism r by using the isomorphism M(X . N2 → M1) →
M(N2 → X∗ . M1) provided by Proposition 1.3.10 and extending to direct sums.

Proposition 4.1.8. The monoidal structure on Mop ⊗ M naturally extends to a monoidal structure on
BalC( M∗ ,M) and Zbibal( MC D).

Proof. Given two balanced objects (S, τ) and (T, κ) of Mop ⊗ M, we can build a balancing on
the tensor product S � T by forming the composite (for each X ∈ C)

(τ � κ)X : LC(X)(S � T)
n

LC
X,S,T−−−−−−→ LC(X)(S) � T

τX�T−−−−−−→ RC (X)(S) � T

rX,S,T−−−−−−→ S � LC(X)(T) S�κX−−−−−−→ S � RC (X)(T)
(m

RC
X,S,T )

−1

−−−−−−→ RC (X)(S � T).

The resulting natural isomorphism (τ � κ)X : LC(X)(S �T) → RC (X)(S �T) obeys the balancing
condition (3.2.1) because both τ and κ do, and r obeys a bimodule associativity compatibility
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condition analogous to Proposition 3.1.8 for φ. We neglect to explicitly define the structure
of a balancing on 1, since this involves a sum over a choice of bases for the vector spaces
M(Xi → X .Xi). Instead we appeal to the fact that P is an equivalence of ordinary categories in
the finitely semisimple case, and thus we can pull back the modulators on the identity module
functor MC → MC .

Individual squares asserting that f : S → S′ and g : T → T′ are both morphisms of balanced
objects directly assemble by superposition into a square asserting that f � g is a morphism of
balanced objects. As in Proposition 1.5.5 the associativity condition (3.2.1) forces the associator
to be a morphism of balanced objects, and the unitors pull back via P. In the situation of a pair
of bibalanced objects (S, τ, σ) and (T, κ, χ), we obtain a pair of balancings on S � T in the way
in which we have just seen. The unit is again the pull back of the identity bimodule functor
MC D → MC D under P. The claimed extension to a functor from Zbibal( MC D) follows by

assembling the respective bibalancing compatibility diagrams (3.2.2) for S and T into a single
diagram for S � T.

Proposition 4.1.9. The functor P : Mop ⊗ M → End(M) of Proposition 3.1.12 and its extensions to
BalC( M∗ ,M) and Zbibal( MC D) are all naturally monoidal functors.

Proof. A morphism ι : 1End(M) → P(1Mop⊗M) is the data for each simple Xi of a morphism

ιXi : Xi → P(1Mop⊗M)(Xi) � HomMop M ©«
⊕

i

Xi ⊗ Xi ⊗ Xi
ª®¬ �

⊕
i

M(Xi → Xi)Xi .

Recalling the isomorphisms ψi : 1 → M(Xi → Xi) of Proposition 4.1.5 we directly construct
each component ιXi . It is clear that the components ιXi are natural with respect to one another,
and hence assemble into a natural transformation ι.

Given any pure objects N1 ⊗ N2 and M1 ⊗ M2 of Mop ⊗M, a component of JN1⊗N2 ,M1⊗M2 of
a tensorator for P is specified by a natural isomorphism

JN1⊗N2 ,M1⊗M2 : P(N1 ⊗ N2) � P(M1 ⊗ M2)
∼−−→ P((N1 ⊗ N2) � (M1 ⊗ M2)),

which is the data for each K ∈ M of a map

N1M(N2 → M1M(M2 → K)) ∼−−→ (N1M(N2 → M1))M(M2 → K).

Such an isomorphism is exactly provided by the natural isomorphism component γN1 ,N2 ,M1 ,M2 ,K ;
extending to direct sums, it is then clear that the components of J and J itself are all natural
isomorphisms. The associativity hexagon now follows from the fact that the associator of
Mop ⊗M was also built from γ. The unit constraint squares commute because ιwas constructed
using the same isomorphisms ψ j used to define the unitors. In the situation of a category of
balanced or bibalanced objects one sees that ι and the components of J are each morphisms of
bimodule functors directly from our definitions.

Thus when M is finitely semisimple we obtain the following (as usual by appeal to
Proposition 1.2.16).

Theorem 4.1.10. There are monoidal equivalences Mop ⊗M ⊗' End(M), BalC( M∗ ,M) ⊗' End(MC),
and Zbibal( MC D) ⊗' End( MC D).

Remark 4.1.11. When C � D the Drinfeld center Z( MC C) makes sense, and when M is
finitely semisimple we have Z( MC C) ' [ CC C → MC C]. If in addition the bimodule structure
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on M arises from a monoidal functor H : C −−→⊗ M then precomposition with H gives a
functor End( MC C) → [ CC C → MC C], and thus Theorem 4.1.10 gives a comparison between
Zbibal( MC D) and Z( MC C).

4.2 A semimonoidal structure in the nonsemisimple case

The majority of the results of the previous section assume that M is finitely semisimple, but it is
worth remarking that this was only partially necessary. Namely, all of our constructions and
verifications which did not involve the tensor unit and unitors do not require the hypothesis of
finite semisimplicity. We still obtain a semimonoidal category structure on Mop ⊗ M in any
case, and the functor P : Mop ⊗ M → End(M)—and even extensions of P to a functor from a
category of (bi)balanced objects—is still a functor of semimonoidal categories with the provided
tensorator.

Of course, this means that when P is an equivalence of semimonoidal categories, the category
Mop ⊗ M (along with the associated categories of (bi)balancings) is actually monoidal. As
we have just seen, this is certainly the situation when M is finitely semisimple and thus the
functor Q exists, witnessing an explicit inverse. In fact, we have the following converse to this
implication.

Proposition 4.2.1. Suppose that M is abelian and locally finite. The category M is finitely semisimple if
and only if Mop ⊗M is unital (with respect to the semimonoidal structure afforded by Proposition 4.1.4).

Proof. We have already seen that finite semisimplicity of M implies unitality of Mop ⊗ M in
Section 4.1, so we just handle the other implication.

Since the unit is determined up to arbitrary isomorphism, write

1 �

⊕
i

Mi ⊗ Ni (4.2.1)

for some Mi ∈ Mop and Ni ∈ M. We can always arrange that in the sum (4.2.1) each summand
is indecomposable (in that both Mi and Ni are indecomposable themselves), and we do this.

Then if X is a simple object of M there is necessarily an isomorphism

X ⊗ X �
⊕

i

XM(X → Mi) ⊗ Ni � X ⊗ ©«
⊕

i

NiM(X → Mi)
ª®¬ .

Consequently, there exists a unique j such that M(X → M j) is nonzero (and in this case is
one-dimensional), and it follows that then N j � X as well. Unitality on the other side similarly
gives rise to an isomorphism

X ⊗ X �
⊕

i

MiM(Ni → X) ⊗ X � ©«
⊕

i

MiM(Ni → X)ª®¬ ⊗ X.

Since N j � X we have in particular that the vector space M(Ni → X) is one-dimensional (and
critically, nonzero). Together with simplicity of X we obtain that M(Ni → X) is zero for all
i , j, and therefore M j � X as well. Hence X ⊗ X appears (up to isomorphism) as a summand
in (4.2.1) for X a representative of each isomorphism class of simple objects of M. Since the
direct sum (4.2.1) is necessarily finite, we conclude that M has finitely many simple objects.
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Now let M be any indecomposable object of M. Then there is again an isomorphism

M ⊗ M � M ⊗ ©«
⊕

i

NiM(M → Mi)
ª®¬ .

By the indecomposability hypothesis the only possibility is that there exists some j such that for
all i , j we have M(M → Mi) � 0, and for i � j we have M(M → M j) � k and M � N j . But
now since M has finite length (the category M is locally finite), M has a simple quotient Y (take
the quotient of M by any maximal proper subobject, which exists again by the local finiteness
of M), and we have just seen that (up to isomorphism) Y ⊗ Y is a summand in (4.2.1). Hence
M(M → Y) is nonzero, so this establishes that M j ⊗ N j � Y ⊗ Y. Consequently M � Y, and
therefore every indecomposable object of M is simple. This completes the proof.

4.3 Monoidal structures on representations of annular categories

Let C and D be pivotal categories with End(1) � k. In Section 2.4 we defined a braided monoidal
structure on representations of the ordinary annular category

∫
S1 C using diagrams in doubly

punctured disks. The monoidal product did not generalise to the setting of representations of
categories of marked annuli

∫
S1( ND C , MC D) in Section 3.5, since the bulk boundaries labelled

by module categories need not have matched-up when drawn in a doubly punctured disk.
Nonetheless, when we set N � M∗ the category

∫
S1( M∗D C , MC D) consists of diagrams of

the form of Figure 4.1a, which naturally fit into the punctures of the doubly punctured marked
disk of Figure 4.1b. Following Section 2.4 we are once again able to construct a monoidal
product, but there is now no natural braiding, since the punctures in Figure 4.1b cannot be
twisted around one another while returning to a diagram of the same form (the bulk boundaries
will become scrambled). This is directly analogous to the fact that BiBal(D ,C)(N ,M) is only
naturally (semi)monoidal once we impose the same assumption N � M∗ (and not braided).
In Theorem 3.6.5 we showed that finite semisimplicity of M implies that these two categories
were equivalent (up to an opposite), and it is not difficult to see how to extend the results of
Section 2.4 to establish that this is a monoidal equivalence.

We also saw from Corollary 3.6.5.1 that in the finitely semisimple case that Z( MC C) is
equivalent to the opposite of the category representations of marked annuli of the form of
Figure 3.6b. The representations of the associated diagram category do not inherit a monoidal
product for the same reason as above; they cannot be made to fit compatibly in doubly punctured
disks. However, by Proposition 1.5.5 the Drinfeld center Z( MC C) does have the structure of a
(Z(C),Z(C))-bimodule category. Diagrammatically this corresponds to the fact that we are
able to insert diagrams of the form of Figures 3.6a and 3.6b into the respective left and right
punctures of the marked doubly punctured disk

CMC D . (4.3.1)

Of course there is a corresponding (Z(C),Z(D))-bimodule category structure on Zbibal( MC D)
as well, but this is where our story ends.
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