Week 1 Problems

June 24, 2022

Problem 1. Which condition do we need on the transition functions $t_{\alpha, \beta}$: $U_{\alpha} \cap U_{\beta} \rightarrow G L\left(\mathbb{R}^{n}\right)$ so that together they assemble into a vector bundle?

Problem 2. What condition do we need on maps $f_{\alpha}: U_{\alpha} \rightarrow G L\left(\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right)$ so that they assemble into a map of vector bundles?

Problem 3. Let $f: E \rightarrow F$ of be a map of vector bundles over the same base B. Prove that if f restricts to an isomorphism on each fiber then f is an isomorphism, via the following strategy:

1. Show that E and F have a common trivializing open cover $\left\{U_{\alpha}\right\}$.
2. Reduce to the case that E and F are both trivial by showing that it suffices to check that f is an isomorphism when restricted to a map of vector bundles $f: E_{U_{\alpha}} \rightarrow F_{U_{\alpha}}$.
3. Prove the claim in this special case.

Problem 4. Recall the Möbius bundle $M \rightarrow S^{1}$ from Day 1. Compute $M \oplus M$, $M \otimes M$, and (if we had time to define it) the pullback $\gamma_{n}^{*} M$ where $\gamma_{n}: S^{1} \rightarrow S^{1}$ is the standard winding number n loop.

Problem 5. Show that our definition of the direct sum of vector bundles coincides with Hatcher's.

Problem 6. Show that $T S^{1}$ is trivial. Hint: view S^{1} as a subset of \mathbb{C} and consider the action of multiplication by i. (Could we make something similar work for e.g. TS ${ }^{3}$?)

Problem 7. Show that $T S^{2}$ is stably trivial 1
Problem 8. Show that a vector bundle $E \rightarrow B$ has k linearly independent sections if and only if E has a trivial k-dimensional subbundle.

Problem 9. Show that the orthogonal complement of a subbundle is independent (up to isomorphism) of the choice of inner product.

[^0]
[^0]: ${ }^{1}$ Recall that this means that $T S^{2}$ becomes trivial after taking a direct sum with a trivial bundle.

