Week 2 Problems

July 1, 2022

For additional context see the online notes for this class.
Just as we have used $\operatorname{Vect}^{k}(B)$ to denote the set of isomorphism classes of rank k real vector bundles over B, let $\operatorname{Vect}_{\mathbb{C}}^{k}(B)$ denote the isomorphism classes of rank k complex vector bundles over B.

Problem 1. Check that the conjugation ${ }^{1}$ operation on complex vector spaces gives rise to a conjugation operation for complex vector bundles, which induces an automorphism of the set $\operatorname{Vect}_{\mathbb{C}}^{k}(B)$.

Problem 2. Recall the definition of an inner product on a real vector bundle $E \rightarrow B$. State the analogous definition of a (Hermitian) inner product on a complex vector bundle.

Problem 3. Recall that if $L \rightarrow B$ is a real line bundle then $L \otimes L$ is always trivial. Using a similar argument, show that if L is instead a complex line bundle then $L \otimes \bar{L}$ is always trivial.

Let's write $\varepsilon_{n} \rightarrow B$ for the rank n trivial complex vector bundle over B.
Problem 4. Show that $T S^{2}$ is stably trivial, in particular by exhibiting an isomorphism between $T S^{2} \oplus \varepsilon_{1}$ and ε_{3}.

Let \sim_{s} denote the relation on $\operatorname{Vect}_{\mathbb{C}}^{k}(B)\left(\right.$ or Vect $\left.^{k}(B)\right)$ of stable isomorphism, i.e. $[E] \sim_{s}[F]$ iff there is some $n>0$ such that $E \oplus \varepsilon_{n} \cong F \oplus \varepsilon_{n}$. Similarly declare that $[E] \sim[F]$ if there are $m, n>0$ such that $E \oplus \varepsilon_{m} \cong F \oplus \varepsilon_{n}$.

Problem 5. Check that \sim_{s} and \sim are well-defined equivalence relations.
Problem 6. Last time we computed $M \oplus M$ and $M \otimes M$ for $M \rightarrow S^{1}$ the Möbius bundle; now compute the pullback $\gamma_{n}^{*} M$ where $\gamma_{n}: S^{1} \rightarrow S^{1}$ is the standard winding number n loop.

Definition 7. When B is compact Hausdorff, the quotient $\tilde{K}(B):=\operatorname{Vect}_{\mathbb{C}}^{k}(B) / \sim$ is the reduced K-group of B.

Problem 8. Verify that $\tilde{K}(B)$ is an abelian group.
Definition 9. Let $(M,+)$ be a commutative monoid with identity $0 \in M$. The group completion $\operatorname{Gr}(M)$ of M is the quotient of $M \times M$ by the relation which identifies $\left(m_{1}, m_{2}\right)$ with $\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$ exactly when $m_{1}+m_{2}^{\prime}=m_{1}^{\prime}+m_{2}$.

One is supposed to think of the class $\left[\left(m_{1}, m_{2}\right)\right] \in \operatorname{Gr}(M)$ as the formal difference " $m_{1}-m_{2}$ ".

[^0]Problem 10. Check that $\operatorname{Gr}(M)$ is canonically a group under the operation $\left[\left(m_{1}, m_{2}\right)\right]+\left[\left(m_{1}^{\prime}, m_{2}^{\prime}\right)\right]=\left[\left(m_{1}+m_{1}^{\prime}, m_{2}+m_{2}^{\prime}\right)\right]$ and identity $[(0,0)]$. Show that the function $M \rightarrow \operatorname{Gr}(M)$ defined by $m \mapsto[(m, 0)]$ is a monoid homomorphism.

Definition 11. When B is compact Hausdorff, the group completion $K(B):=$ $\operatorname{Gr}\left(\operatorname{Vect}_{\mathbb{C}}^{k}(B) / \sim_{\mathrm{s}}\right)$ is the K-group of B.

Problem 12. Show that there is a surjective group homomorphism $K(B) \rightarrow \widetilde{K}(B)$ defined by $[(E, F)] \mapsto[E]-[F]$. What is the kernel of this map?

Definition 13. For each continuous map $f: B^{\prime} \rightarrow B$ let $K(f)$ be the function $K\left(B^{\prime}\right) \rightarrow K(B)$ induced by the pullback by f, i.e. defined by $[(E, F)] \mapsto$ $\left[\left(f^{*} E, f^{*} F\right)\right]$.

Problem 14. Show that this definition of $K(f)$ gives a well-defined group homomorphism for each continuous function f. Moreover, verify that $K(f)$ depends only on the homotopy class of f.

Problem 15. Show that $K(B)$ is a ring under the multiplication operation induced by the tensor product of vector bundles, and that with respect to this operation $\mathrm{K}(f)$ is a ring homomorphism.

> * * *

Problem 16. Show that a vector bundle $E \rightarrow B$ has k linearly independent sections if and only if E has a trivial k-dimensional subbundle.

Problem 17. Show that the orthogonal complement of a subbundle is independent (up to isomorphism) of the choice of inner product.

[^0]: ${ }^{1}$ See the preliminary notes for a definition.

