Week 3 Problems

July 8, 2022

Problem 1. Let $M \to S^1$ be the Möbius bundle, and let $\gamma_n : S^1 \to S^1$ be the standard winding number *n* loop. Show that the pullback $\gamma_n^* M$ is trivial for *n* even and isomorphic to *M* for *n* odd.

Problem 2. Show that $GL(\mathbb{C}^n)$ is connected. Why does the same argument fail for $GL(\mathbb{R}^n)$?

Problem 3. Recall that $\mathbb{C} \mathbb{P}^n$ is the space of lines in \mathbb{C}^{n+1} . Convince yourself that $\mathbb{C} \mathbb{P}^1$ is homeomorphic to S^2 .

Problem 4. Convince yourself of the argument of Example 1.10 of Hatcher (which we essentially saw last time), that the canonical line bundle $H \to \mathbb{C} \mathbb{P}^1$ has clutching function f(z) = z.

Problem 5. Show that $(H \otimes H) \oplus 1 = H \oplus H$ in $K(S^2)$ by computing clutching functions for the left and right hand sides.

Problem 6. Define $\mathbb{N}_{\infty} = \{0, 1, 2, ..., \infty\}$. Give \mathbb{N}_{∞} the structure of a commutative monoid by extending the operation of addition on \mathbb{N} by declaring that $n + \infty = \infty = \infty + n$ for all $n \in \mathbb{N}_{\infty}$. Compute the group completion $Gr(\mathbb{N}_{\infty})$.

Problem 7. Let Vect(X) be the set of all isomorphism classes of *possibly infinite dimensional*¹ (complex) vector bundles over *X*. Once again calculate the group completion Gr(Vect(X)).

Problem 8. Show that the complexification $V_{\mathbb{C}}$ of ordinary real vector spaces V gives rise to a corresponding operation which turns real vector bundles $E \rightarrow B$ into complex ones $E_{\mathbb{C}} \rightarrow B$. What is the rank of $E_{\mathbb{C}}$ in terms of the rank of E?

Likewise show that realification $V_{\mathbb{R}}$ of complex vector spaces *V* again gives rise to a corresponding operation on complex vector bundles.

Denote the real K-group of a space X by KO(X).

Problem 9. Show that realification and complexification induce maps $Vect_{\mathbb{R}}(X) \rightleftharpoons$ $Vect_{\mathbb{C}}(X)$ which descend to group homomorphisms $KO(X) \rightleftharpoons K(X)$ of Kgroups. Of course, K(X) and KO(X) are also both rings; are these maps ring homomorphisms?

Finally, the two possible composites of these maps give endomorphisms of the groups KO(X) and K(X); compute them.

Problem 10. Show that every real vector bundle over a compact base is a subbundle of a trivial bundle.

¹Q: Formally, what should this mean?