A Morse-theoretic approach to family Floer homology

Keeley Hoek

April 23, 2025

Roughly speaking, SYZ mirror symmetry begins with

$\pi:X\to Q$

a (suitable) fibration by Lagrangian tori.

► Roughly speaking, SYZ mirror symmetry begins with

$\pi:X\to Q$

a (suitable) fibration by Lagrangian tori.

Roughly speaking, SYZ mirror symmetry begins with

 $\pi:X\to Q$

a (suitable) fibration by Lagrangian tori.

One then produces a dual torus fibration

$$\pi^{\vee}: X^{\vee} \to Q$$

via a geometric recipe.

► The difficulty is that π may have singular fibers, and the construction of X[∨] must be deformed accordingly.

One then produces a dual torus fibration

$$\pi^{\vee}: X^{\vee} \to Q$$

via a geometric recipe.

► The difficulty is that π may have singular fibers, and the construction of X[∨] must be deformed accordingly.

• On the other hand, HMS asserts

Fuk(X)
$$\simeq_{A_{\infty}}$$
 "D^b Coh(X ^{\vee})".

Family Floer theory builds a *rigid analytic mirror* X₀[∨] over a local piece Q₀ ⊂ Q as

$$X_0^{\vee} = \text{``moduli space of its points''}$$
$$\stackrel{(\text{set})}{=} \bigsqcup_{q \in Q_0} H^1(F_q; U_{\Lambda}).$$

Family Floer theory builds a *rigid analytic mirror* X₀[∨] over a local piece Q₀ ⊂ Q as

$$X_0^{\vee} = \text{``moduli space of its points''}$$
$$\stackrel{(\text{set})}{=} \bigsqcup_{q \in Q_0} H^1(F_q; U_{\Lambda}).$$

Here $U_{\Lambda} = \operatorname{val}^{-1}(0) \subset \Lambda^*$ is the unitary subgroup of *Novikov field*

$$\Lambda = \left\{ \sum_{i=1}^{\infty} a_i T^{x_i} : a_i \in \mathbb{k}, x_i \in \mathbb{R}, \lim_{i \to \infty} x_i = \infty \right\}.$$

Family Floer theory builds a *rigid analytic mirror* X₀[∨] over a local piece Q₀ ⊂ Q as

$$X_0^{\vee} = \text{``moduli space of its points''}$$
$$\stackrel{(\text{set})}{=} \bigsqcup_{q \in Q_0} H^1(F_q; U_{\Lambda}).$$

Here $U_{\Lambda} = \operatorname{val}^{-1}(0) \subset \Lambda^*$ is the unitary subgroup of *Novikov field*

$$\Lambda = \left\{ \sum_{i=1}^{\infty} a_i T^{x_i} : a_i \in \mathbb{k}, x_i \in \mathbb{R}, \lim_{i \to \infty} x_i = \infty \right\}.$$

The space X₀[∨] comes equipped with a comparison functor which can be used to (try to) prove HMS.

We take a Morse-theoretic approach; pick a suitable Morse function *f* on *X*.

Theorem

There is a curved A_{∞} *-functor*

$$C: \mathcal{F}_{sec}(\pi, f) \to \operatorname{mod-} \mathcal{A}(\pi, f).$$

We take a Morse-theoretic approach; pick a suitable Morse function *f* on *X*.

Theorem

There is a curved A_{∞} *-functor*

$$C: \mathcal{F}_{sec}(\pi, f) \to \operatorname{mod-} \mathcal{A}(\pi, f).$$

In other words, a functor

 $\begin{cases} Fukaya \text{ category of} \\ Lagrangian \text{ sections of } \pi \end{cases} \rightarrow \begin{cases} A_{\infty}\text{-modules for the} \\ Morse-Fukaya \text{ algebra of } \pi \end{cases}.$

- 1. The Morse–Fukaya algebra $\mathcal A$
 - ► This is an A_∞-algebra; for a single Lagrangian is due to Charest–Woodward, being in turn based on the ideas of Cornea–Lalonde and Fukaya–Oh–Ohta–Ono.
 - Associated to a Lagrangian $L \subset X$ and choice of Morse function $f : L \to \mathbb{R}$ is

$$\mathcal{A}(L,f) = \Lambda \langle \operatorname{crit} f \rangle,$$

graded by Morse index mod 2.

- 1. The Morse–Fukaya algebra $\mathcal A$
 - ► This is an A_∞-algebra; for a single Lagrangian is due to Charest–Woodward, being in turn based on the ideas of Cornea–Lalonde and Fukaya–Oh–Ohta–Ono.
 - Associated to a Lagrangian $L \subset X$ and choice of Morse function $f : L \to \mathbb{R}$ is

$$\mathcal{A}(L,f) = \Lambda \langle \operatorname{crit} f \rangle,$$

graded by Morse index mod 2.

► This algebra is equipped with a family of structure maps

$$\mu^d: \mathcal{A}^{\otimes d} \to \mathcal{A}[2-d],$$

which we now define.

- 1. The Morse–Fukaya algebra $\mathcal A$
 - The basic objects we consider are *pseudoholomorphic treed disks*. These are continuous maps

 $u:\Delta \to X$

from decorated domains Δ inductively built from the disk

- 1. The Morse–Fukaya algebra $\mathcal A$
 - The basic objects we consider are *pseudoholomorphic treed disks*. These are continuous maps

 $u:\Delta \to X$

from decorated domains Δ inductively built from the disk

An example treed disk domain:

Each edge *e* is attached interior-to-interior or boundary-to-boundary, and has a length *l*(*e*) ∈ [0,∞].

- 1. The Morse–Fukaya algebra \mathcal{A}
 - We may write $\Delta = S_{\Delta} \cup T_{\Delta}$ as a union of the *surface* and *tree* parts, respectively.
 - We require that u : ∆ → X obeys:
 1. *Pseudoholomorphic on the surface part*-we have

 $J \circ Du = Du \circ j$ on S_{Δ} .

2. A Morse gradient flow on the tree part-we have

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \nabla f \quad \text{on } T_{\Delta}.$$

- 1. The Morse–Fukaya algebra $\mathcal A$
 - We may write $\Delta = S_{\Delta} \cup T_{\Delta}$ as a union of the *surface* and *tree* parts, respectively.
 - We require that u : ∆ → X obeys:
 1. *Pseudoholomorphic on the surface part*-we have

$$J \circ Du = Du \circ j$$
 on S_{Δ} .

2. A Morse gradient flow on the tree part-we have

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \nabla f \quad \text{on } T_{\Delta}.$$

Of course, in practice we will actually introduce domain-dependent perturbations of (*J*, *f*) into the equations to avoid transversality issues which arise.

The basic idea, originally due to Cieliebak–Mohnke, is to solve this problem via *stabilizing divisors*.

The basic idea, originally due to Cieliebak–Mohnke, is to solve this problem via *stabilizing divisors*.

Theorem (Charest-Woodward, Auroux-Muñoz-Presas)

Under suitable rationality assumptions on X and L, there exists a codimension 2 symplectic $D \subset X - L$, such that any J-holomorphic disk $u : (\mathbb{D}, \partial \mathbb{D}) \rightarrow (X, L)$ with $\omega([u]) > 0$ intersects D.

The basic idea, originally due to Cieliebak–Mohnke, is to solve this problem via *stabilizing divisors*.

Theorem (Charest-Woodward, Auroux-Muñoz-Presas)

Under suitable rationality assumptions on X and L, there exists a codimension 2 symplectic $D \subset X - L$, such that any J-holomorphic disk $u : (\mathbb{D}, \partial \mathbb{D}) \rightarrow (X, L)$ with $\omega([u]) > 0$ intersects D.

Proof sketch.

Take an approximately holomorphic section of an ample line bundle on *X* concentrated on *L*, then perturb—the zero section gives *D*.

- 1. The Morse–Fukaya algebra ${\mathcal R}$
 - In particular, pseudoholomorphic treed disks $u : \Delta \rightarrow X$ will be:

- 1. The Morse–Fukaya algebra $\mathcal A$
 - In particular, pseudoholomorphic treed disks $u : \Delta \rightarrow X$ will be:
 - stable—disk and sphere components have "enough" special points, e.g. if Du() = 0 then has at least 3 special points. In order to facilitate this, we introduce interior marked points *, e.g.

- 1. The Morse–Fukaya algebra $\mathcal A$
 - In particular, pseudoholomorphic treed disks $u : \Delta \rightarrow X$ will be:
 - stable—disk and sphere components have "enough" special points, e.g. if Du() = 0 then has at least 3 special points. In order to facilitate this, we introduce interior marked points *, e.g.

2. *adapted to* D—each marked point \star maps to D, and connected component of $u^{-1}(D)$ contains a marked point.

Definition

Fixing $\mathbf{x} = (x_0, \dots, x_d) \in \operatorname{crit} f$ and $\beta \in \operatorname{H}_2(X, L)$ we may form

 $\mathcal{M} = \mathcal{M}(L, D, \mathbf{x}, \beta),$

the moduli space of all adapted stable pseudoholomorphic treed disks $u : \Delta \rightarrow X$ which

► have correct boundaries—

$$u(\partial \Delta) \subset L$$
 for $\partial \Delta = T_{\Delta} \cup \bigcup_{\substack{\mathbb{D} \subset \Delta \\ a \text{ disk}}} \partial \mathbb{D}$,

• *have correct I/O*— $u(v_i) = x_i$ for v_i the *i*th bdry point, and

• represent β —

$$\sum_{C \subset \Delta} [u|_C] = \beta.$$

- 1. The Morse–Fukaya algebra $\mathcal A$
 - We know that the expected dimension of the moduli space of pseudoholomorphic disks with *n* marked points and which represent $\beta \in H_2(X, L)$ is

$$(n-3)+\mu(\beta)+(d+1),$$

essentially by the definition of the *Maslov class* $\mu(\beta)$. So, treed disks of this type contribute to a counting operation of degree $2 - d - \mu(\beta)$.

- 1. The Morse–Fukaya algebra $\mathcal A$
 - We know that the expected dimension of the moduli space of pseudoholomorphic disks with *n* marked points and which represent $\beta \in H_2(X, L)$ is

$$(n-3)+\mu(\beta)+(d+1),$$

essentially by the definition of the *Maslov class* $\mu(\beta)$. So, treed disks of this type contribute to a counting operation of degree $2 - d - \mu(\beta)$.

• The expected dimension of \mathcal{M} is then

$$\dim \mathcal{M} = d - 2 + I(x_0) - \sum_{i=1}^d I(x_i) + \sum_{C \subset \Delta} I(u|_C).$$

► We could now proceed in the customary way to define the operations µ^k, if say *L* was equipped with a local system—if you have seen the definition of a Fukaya category before, you'll know that we are tantalizingly close.

• We are going to go in a slightly different direction.

• The natural way to construct a family version of \mathcal{A} is to consider $u : \Delta \to X$ with each disk boundary constrained to a (possibly different) fiber of π :

• The natural way to construct a family version of \mathcal{A} is to consider $u : \Delta \to X$ with each disk boundary constrained to a (possibly different) fiber of π :

- Suppose instead that we had chosen a Morse function *f* on all of *X*, and arranged that *f* lifted a Morse function on *B*.
- Also for simplicity, let's work over a simply connected compact piece Q₀ ⊂ Q, away from the singular fibers of π.

- Suppose instead that we had chosen a Morse function *f* on all of *X*, and arranged that *f* lifted a Morse function on *B*.
- Also for simplicity, let's work over a simply connected compact piece Q₀ ⊂ Q, away from the singular fibers of π.
- We arrange a cellular decomposition $P^{[k]}$ of Q_0 such that:
 - 1. each *k*-cell $\sigma \in P^{[k]}$ contains a unique $q_{\sigma} \in \operatorname{crit}_k f$, and
 - 2. the union of the descending manifolds of all critical points contained in σ is σ itself.

2. A family version of $\mathcal R$

We need one final piece: the Floer-theoretic weights

$$z^{\beta} = T^{\omega(\beta)} \cdot \operatorname{hol}(\partial \beta)$$

are analytic functions on X_0^{\vee} for each $\beta \in \pi_2(X, F_q)$ by parallel transport $q \rightarrow p$.

► Recall that according to us, points of X₀[∨] are elements of H¹(F_q; U_Λ), so hol is just fancy notation for evaluation.

• Actually, essentially the same construction gives analytic charts on X_0^{\vee} : for a basis $\gamma_1, \ldots, \gamma_n$ of $H_1(F_q)$, for each *i* parallel transport $q \rightarrow p$ causes γ_i to trace out a sheet α_i , to which we in turn associate

$$\left(T^{\omega(\alpha_1)}\operatorname{hol}(\gamma_1),\ldots,T^{\omega(\alpha_n)}\operatorname{hol}(\gamma_n)\right)\in (\Lambda^*)^n.$$

• Actually, essentially the same construction gives analytic charts on X_0^{\vee} : for a basis $\gamma_1, \ldots, \gamma_n$ of $H_1(F_q)$, for each *i* parallel transport $q \rightarrow p$ causes γ_i to trace out a sheet α_i , to which we in turn associate

$$\left(T^{\omega(\alpha_1)}\operatorname{hol}(\gamma_1),\ldots,T^{\omega(\alpha_n)}\operatorname{hol}(\gamma_n)\right)\in (\Lambda^*)^n.$$

• Actually, essentially the same construction gives analytic charts on X_0^{\vee} : for a basis $\gamma_1, \ldots, \gamma_n$ of $H_1(F_q)$, for each *i* parallel transport $q \rightarrow p$ causes γ_i to trace out a sheet α_i , to which we in turn associate

$$\left(T^{\omega(\alpha_1)}\operatorname{hol}(\gamma_1),\ldots,T^{\omega(\alpha_n)}\operatorname{hol}(\gamma_n)\right)\in (\Lambda^*)^n.$$

By suitably refining *P* by perturbing *f*, we can arrange that the collection of functions on π⁻¹(star(σ)) assemble into a sheaf of universal weights

$$O_{\mathrm{an}} = \pi^{\vee}_*(O_{X_0^{\vee}}).$$

By suitably refining *P* by perturbing *f*, we can arrange that the collection of functions on π⁻¹(star(σ)) assemble into a sheaf of universal weights

$$O_{\mathrm{an}} = \pi^{\vee}_*(O_{X_0^{\vee}}).$$

• Our algebra \mathcal{A} is now an O_{an} -module.

Definition

For $\mathbf{x} = (x_1, \dots, x_n) \in (\operatorname{crit} f)^n$ set $\mu^d(\mathbf{x}) \coloneqq \sum \# \mathcal{M}_{d+1}(x_0, \mathbf{x}, \beta) \cdot z^\beta x_0$

$$\mu(\mathbf{x}) = \sum_{x_0,\beta} \# \mathcal{M}_{d+1}(x_0, \mathbf{x}, \beta) \cdot \mathcal{L}^* x_0,$$

where it is understood that the sum is taken over all (x_0, β) for which dim $\mathcal{M}_{d+1}(x_0, \mathbf{x}, \beta) = 0$.

Definition

For $\mathbf{x} = (x_1, \dots, x_n) \in (\operatorname{crit} f)^n$ set

$$\mu^{d}(\mathbf{x}) := \sum_{x_{0},\beta} \# \mathcal{M}_{d+1}(x_{0},\mathbf{x},\beta) \cdot z^{\beta} x_{0},$$

where it is understood that the sum is taken over all (x_0, β) for which dim $\mathcal{M}_{d+1}(x_0, \mathbf{x}, \beta) = 0$.

Theorem

The operations μ^d endow \mathcal{A} with the structure of a (curved) A_{∞} -algebra, i.e. for homogeneous a_1, \ldots, a_d we have

$$0 = \sum_{m+n \le d} (-1)^{\heartsuit} \mu^{d+1-n}(a_1, \ldots, \mu^n(a_{m+1}, \ldots, a_{m+n}), \ldots, a_d)$$

with $\heartsuit = (-1)^{m + \sum_{i=1}^{m} |a_i|}$.

Proof.

Analyze the boundary strata of the 1-dimensional moduli spaces \mathcal{M} ; one shows that the only possible strata are of the type

- Switching to a family setting poses some significant technical challenges—just for example, no stabilizing divisor is disjoint from every fiber of π.
- So, we develop a scheme whereby divisors are turned on and off via a system of weights.

Definition

The category \mathcal{F}_{sec} is the full subcategory of $\mathcal{F} = Fuk(X)$ of Lagrangian sections of π .

Concretely and for simplicity, let {L_i} ⊂ 𝓕_{sec} be a finite family intersecting pairwise transversely. We set

$$\operatorname{Hom}(L_i, L_j) = \begin{cases} \Lambda \langle L_i \cap L_j \rangle & i \neq j \\ \mathcal{A}(L_i) & i = j \end{cases}$$

▶ In \mathcal{F}_{sec} we compose $p_1 \in Hom(L_1, L_2)$ and $p_2 \in Hom(L_2, L_3)$ in the usual way:

► The functor *C* on *objects*—set

 $L \in \mathcal{F}_{\text{sec}} \longmapsto O_{\text{an}} \langle \operatorname{crit} f |_L \rangle.$

► The structure maps

$$\blacktriangleleft^{d-1}: C(\underline{L}) \otimes \mathcal{A}^{d-1} \to C(\underline{L})[2-d]$$

now count pictures of the form (e.g. to compute $y_1 \triangleleft^1 x_1$):

• The functor *C* on *morphisms*—given $p_i \in \text{Hom}(L_i, L_{i+1})$ we must specify

$$C^n(p_1,\ldots,p_n)^{d-1}: C(L_1)\otimes \mathcal{A}^{\otimes d-1} \to C(L_n)[1-n-d].$$

For example, given $p \in \text{Hom}(L_1, L_2)$, compute $C^1(p)^0(y_1)$ by counting:

- One subtlety is that, in order to obtain the functor maps we desire, we must actually replace honest critical points of *f*|_L with *anchors*.
- Fixing a distinguished $L_* \in \text{ob } \mathcal{F}_{\text{sec}}$, an anchor (path) $\gamma : [0, 1] \rightarrow F_q$ is just a path from $\gamma(0) \in \text{crit } f|_L$ to $\gamma(1) \in L_*$ contained wholly in F_q .

• Each input x_i (from \mathcal{A}) induces a *base flow path*:

• Each input x_i (from \mathcal{A}) induces a *base flow path*:

Base paths act on anchors by parallel transport through fibers. We insert a correction by T^{ω(α)}, the area of the swept sheet:

Base paths act on anchors by parallel transport through fibers. We insert a correction by T^{ω(α)}, the area of the swept sheet:

Theorem

There is a curved A_{∞} *-functor*

 $C: \mathcal{F}_{sec}(\pi, f) \to \operatorname{mod-} \mathcal{A}(\pi, f).$

Theorem

There is a curved A_{∞} *-functor*

$$\mathcal{C}: \mathcal{F}_{sec}(\pi, f) \to \operatorname{mod-} \mathcal{A}(\pi, f).$$

Proof.

We again verify the A_{∞} -relations by examining boundary strata. As an example, in the case of $\mu^0 = 0$, the module map $y_1 \triangleleft^1 (x_1, x_2)$ gives a homotopy between

$$(y_1 \triangleleft^1 x_1) \triangleleft^1 x_2$$
 and $y_1 \triangleleft^1 \mu^2(x_1, x_2)$.

(continued)

Proof (continued).

This corresponds to the two possible breakings:

End