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1 Introduction

My work focuses on symplectic geometry and mirror symmetry, and I am interested
broadly in capturing geometric and categorical phenomena detected in mathematical
physics. In particular, I am currently investigating Fukaya categories and the family Floer
approach to Kontsevich’s homological mirror symmetry conjecture. The Fukaya category
of a symplectic manifold is an algebraic package—an example of an 𝐴∞-category—which
encapsulates its Lagrangian Floer theory. My thesis develops a new model of family Floer
theory via Morse theoretic technology, for the purpose of proving Theorem 1.1.
Theorem 1.1. There is a functor of curved 𝐴∞-categories

𝒞 : ℱsec → mod-𝒜
from the Fukaya category of Lagrangian sections of a (suitable) SYZ fibration 𝜋 : 𝑋 → 𝐵 into the
category of modules over the Morse–Fukaya algebra 𝒜 of the fibration 𝜋.

The Strominger–Yau–Zaslow (SYZ) conjecture [13], and homological mirror symmetry
(HMS) as originally set out by Kontsevich [10], are conjectures spawned from the mirror
symmetry phenomenon observed by string theorists. Roughly speaking and as originally
understood, SYZ mirror symmetry begins with a fibration of some kind of Kähler manifold
by Lagrangian tori, and builds from this information a dual torus fibration via a geometric
recipe. The difficulty is that the original fibration is allowed to have singular fibers (and
generally will), and so the constructed mirror must be deformed accordingly.

On the other hand, homological mirror symmetry asserts a derived equivalence be-
tween the Fukaya category of a symplectic manifold and the category of coherent sheaves
on its mirror [11]. Though in general it must be decided—as HMS is extended much be-
yond its initial incarnation comparing Calabi–Yau manifolds with their honest Calabi–Yau
mirrors—what precisely is meant by Fukaya category, and whether to replace the derived
category of coherent sheaves with for instance a noncommutative analogue.

The family Floer program [7, 1, 2, 14, 16] gives a modern reinterpretation of the
construction of the SYZ mirror of 𝜋 : 𝑋 → 𝐵 as a moduli space of objects of the Fukaya
category of 𝑋 supported on the fibers of the fibration. The resulting object, technically a
rigid analytic mirror 𝑋∨ of 𝑋, comes equipped with a functor from the Fukaya category of
𝑋 into coherent sheaves on 𝑋∨ which can then, as an application, be used to prove HMS
as asserted.

The Morse–Fukaya algebra 𝒜 of the fibration 𝜋 : 𝑋 → 𝐵 is an 𝐴∞-algebra determined
by a Morse function on the total space 𝑋, taking coefficients in analytic functions on its
mirror. For an appropriate choice of Morse function, 𝒜 can be understood as a (suitably
deformed) algebra of Čech cochains valued in polyvector fields on the SYZ mirror of 𝑋.
The functor I construct in Theorem 1.1 then gives an analogous presentation of this story;
here the category mod-𝒜 plays the role of a category of coherent sheaves as we explain
below.
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2 The Morse–Fukaya algebra of an SYZ fibration

Throughout fix a Kähler manifold (𝑋, 𝜔, 𝐽) with symplectic form 𝜔 and almost complex
structure 𝐽. Let 𝜋 : 𝑋 \ 𝐷 → 𝐵 be a fibration of 𝑋 by Lagrangian tori, where 𝐷 ⊂ 𝑋 is
a complex hypersurface representing the anticanonical class of 𝑋. The standard way to
proceed is to first construct a mirror to the complement 𝑋0 = 𝑋 \ 𝐷.

As an act of technical expediency let us fix any compact, simply connected subset
𝐵0 ⊂ 𝐵 which is disjoint from the critical values of 𝜋, and let 𝑋00 = 𝜋−1(𝐵0) ⊂ 𝑋0 be the
corresponding restriction of the total space. For now also assume that 𝑓 : 𝑋00 → R is any
Morse–Smale function with respect to a choice of metric on 𝑋00.

The basic objects we consider are (pseudoholomorphic) treed disks; geometrically, these
are continuous maps 𝑢 : Δ → 𝑋00 of decorated domains Δ built from the complex unit
disk via an inductive gluing procedure, and which satisfy relations determined by their
decorations (as developed by Charest–Woodward in [4] and originally Cornea–Lalonde
[5]). Namely, an additional copy 𝐶 of the unit disk may be glued into Δ by attaching
one endpoint of a new line segment to the boundary 𝜕𝐶, and the other endpoint to the
boundary of a disk already inΔ. We call the image of each such disk𝐶 inΔ a disk component.
It is also desirable to permit the attachment of semi-infinite line segments (rays) to disk
boundaries, and to always remember the orientation of line segments we attach (whether
finite or semi-infinite). Figure 1 depicts a schematic diagram of a treed disk domain built
from two complex unit disks and four line segments (three of the segments having open
ends).

Write 𝑆 ⊂ Δ for the interior of the disks in Δ (the surface part) and 𝑇 ⊂ Δ for the
interior of the attached line segments (the tree part); then 𝑢 restricts to maps 𝑢𝑆(𝑥) and
𝑢𝑇(𝑡) defined on 𝑆 and 𝑇 respectively. Let 𝑗 be the complex structure on 𝑆 induced by the
standard complex structure on the unit disk.

Definition 2.1. A continuous map 𝑢 : Δ → 𝑋00 with treed disk domain Δ is pseudoholo-
morphic if we have both

(2.I) 𝑢 is pseudoholomorphic on the surface part: 𝐽 ◦ D 𝑢𝑆 = D 𝑢𝑆 ◦ 𝑗, and

(2.II) 𝑢 is a Morse gradient flow line on the tree part: d𝑢𝑇
d𝑡 = ∇ 𝑓 ◦ 𝑢𝑇 .

In other words, 𝑢 must consist of a family of pseudoholomorphic disks attached along
their boundaries, according to the edges of a tree, via Morse gradient flow lines.

Note that we have already suppressed several technical details; for example, in practice
we perturb the pseudoholomorphic curve equation (2.I) due to transversality issues which
arise while setting up the theory. In general, we allow 𝐽 to be a domain-dependent almost
complex structure determined by a background system of perturbation data, and similarly
for (2.II). This data is chosen and managed consistently via an extension of the scheme
of Charest–Woodward [4] (using stabilizing divisors) to the family setting. Relatedly,
it is often convenient to equip points of treed disk domains with certain combinatorial
bookkeeping labels, but we suppress these here as well.

Pseudoholomorphic treed disks give rise to algebraic operations via fixing a family of
domains, prescribing boundary conditions, and then taking signed counts of their zero
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Figure 1: A schematic diagram of a pseudoholomorphic treed disk.

dimensional (compact) moduli spaces. These algebraic operations act on a complex with
Morse theoretic generators, and this complex takes coefficients in a sheaf 𝒪an obtained
from the analytic functions on the uncorrected mirror of 𝑋0. Let us now describe each of
these details.

First, it is not difficult for us to arrange that the Morse function 𝑓 on 𝑋00 lifts a Morse
function on 𝐵0 (so that their critical points coincide under 𝜋), and that 𝑓 restricted to each
fiber is perfect (i.e. gives a minimal Morse model for the 𝑛-torus). Let 𝑃 be a cellular
decomposition of 𝐵0 with the property that each 𝑘-cell 𝜎 ∈ 𝑃[𝑘] contains in its interior a
unique index 𝑘 critical point 𝑏𝜎, and that 𝜎 is itself the closure of the stable manifold of 𝑏𝜎.

Writing 𝐹𝑏 = 𝜋−1(𝑏) for the fibers, the uncorrected mirror then has underlying set of
points simply the disjoint union [11, 1]

𝑋∨0 =

⊔
𝑏∈𝐵0

H1(𝐹𝑏 , 𝑈Λ)

with 𝑈Λ = val−1(0) the unitary subgroup of the Novikov field Λ we work over.1 Identify
the groups 𝜋2(𝑋, 𝐹𝑏) via isotoping fibers; then for each 𝛽 ∈ 𝜋2(𝑋, 𝐹𝑏) we naturally obtain
a function

𝑧𝛽 = 𝑇𝜔(𝛽) hol(𝜕𝛽)
on 𝑋∨0. In the definition of this Floer-theoretic weight, 𝜔(𝛽) is the symplectic area of 𝛽 and
hol(𝜕𝛽) denotes2 evaluation of points of 𝑋∨0 on the class 𝜕𝛽. The set 𝑋∨0 is naturally
endowed with the structure of a rigid analytic space (having (Λ∗)𝑛 as a local model) for

1The Novikov field with coefficients in the field k (of characteristic zero, which we fix throughout) consists
of series in the formal variable 𝑇 of the form

Λ =

{∑
𝑖 𝑐𝑖𝑇

𝑥𝑖 : 𝑐𝑖 ∈ k, 𝑥 𝑖 ∈ R, 𝑥𝑖 → ∞
}
,

and comes equipped with a valuation map val :
∑

𝑖 𝑐𝑖𝑇
𝑥𝑖 ↦→ min{𝑥𝑖 : 𝑐𝑖 ≠ 0}.

2This notation is due to the fact that 𝑋∨0 is realized as a moduli space of fibers of 𝜋 equipped with a
unitary rank 1 local system—since points of which are determined by their holonomy map, they equivalently
belong to H1(𝐹𝑏 , 𝑈Λ) for some 𝑏 ∈ 𝐵.



which the functions 𝑧𝛽 are analytic. A chart is furnished by (𝑧𝛽𝑖 )1≤𝑖≤𝑛 , with the classes 𝛽𝑖
chosen so that the 𝜕𝛽𝑖 form a basis of H1(𝐹𝑏 ;Z).

There is a natural projection𝜋∨ : 𝑋∨0 → 𝐵0 and, after suitably refining 𝑃 by perturbing
𝑓 , the collection of analytic functions on 𝜋−1(star(𝜎)) for each 𝜎 ∈ 𝑃 assemble into a sheaf
𝒪an = 𝜋∨

∗ (𝒪𝑋∨0) of universal weights.

Definition 2.2. The Morse–Fukaya algebra 𝒜 = CM•(𝜋, 𝑓 ;𝒪an) is the module freely gen-
erated by the critical points of 𝑓 , with coefficients taken in 𝒪an, equipped with algebraic
operations 𝜇𝑑 for 𝑑 ≥ 0 defined below.

Fix 𝑑 + 1 points 𝑥0 , 𝑥1 , . . . , 𝑥𝑑 ∈ crit 𝑓 . We say that a pseudoholomorphic treed disk
𝑢 : Δ → 𝑋00 has 𝑑 inputs and 1 output if, respecting orientations, in constructing Δ we
attached exactly 𝑑 copies of the ray (−∞, 0] and 1 copy of the ray [0,∞). Call 𝑥 ∈ 𝑋00

the input (resp. output) of the ray 𝑅 = (−∞, 0] ⊂ Δ (resp. 𝑅 = [0,∞) ⊂ Δ) whenever
lim|𝑡|→∞ 𝑢|𝑅(𝑡) = 𝑥. Thus Figure 1 depicts a pseudoholomorphic treed disk with 2 inputs
𝑥1 and 𝑥2 and 1 output 𝑥0. Note that a treed disk domain Δ with 1 output has a canonical
ordering on its inputs induced by the orientation of the disk components of Δ.

For each 𝛽 ∈ 𝜋2(𝑋, 𝐹𝑏0) we may form the moduli space ℳ𝑑+1(𝑥0 , . . . , 𝑥𝑑; 𝛽) from all
(suitably perturbed) pseudoholomorphic treed disks 𝑢 : Δ → 𝑋00 with:

• Disk boundaries lying on fibers—each disk component 𝐶 ⊂ Δ satisfies 𝑢(𝜕𝐶) ⊂ 𝐹𝑏
for some 𝑏 ∈ 𝐵 (all possibly different).

• Representing class 𝛽—each disk component 𝐶 ⊂ Δ gives rise to a class [𝑢|𝐶] ∈
𝜋2(𝑋, 𝐹𝑏) hence in 𝜋2(𝑋, 𝐹𝑏0), and we demand that the sum of all such classes is 𝛽.

• Correct I/O—we require that 𝑢 has 𝑑 inputs 𝑥1 , . . . , 𝑥𝑑 and 1 output 𝑥0.

• Stable components—the map 𝑢 obeys a family of straightforward technical condi-
tions3 which ensure we obtain a compact Hausdorff moduli space with the correct
dimension.

We must of course also take care to develop a consistent scheme to orient these moduli
spaces, though we do not elaborate further here on these technical details [15, 8].

Now given x = (𝑥1 , . . . , 𝑥𝑑) ∈ crit 𝑓 we set

𝜇𝑑(x) :=
∑
𝛽,𝑥0

#ℳ𝑑+1(𝑥0 , 𝑥1 , . . . , 𝑥𝑑; 𝛽) · 𝑧𝛽𝑥0 , (2.III)

where # is the signed count of oriented points, and the sum is taken over classes 𝛽 and
critical points 𝑥0 for which the expected dimension of ℳ𝑑+1(𝑥0 , 𝑥1 , . . . , 𝑥𝑑; 𝛽) is zero. In
accordance with the Z2-grading induced by Morse index mod 2, upon declaring that each
𝜇𝑑 is 𝒪an-linear we obtain a family of graded multiplication maps 𝜇𝑑 : 𝒜⊗𝑑 → 𝒜[2 − 𝑑].

3For instance, we require that each disk component on which 𝑢 is constant must meet at least 3 line
segments.



Theorem 2.3. The operations 𝜇𝑑 endow the Morse–Fukaya algebra 𝒜 with the structure of a
curved 𝐴∞-algebra [3]. In other words, for each 𝑑 > 0 and homogeneous elements 𝑎1 , . . . , 𝑎𝑑 ∈ 𝒜
of respective degrees |𝑎𝑖| we have the identity [12]

0 =

∑
𝑚+𝑛≤𝑑

(−1)♥𝜇𝑑−𝑛+1(𝑎1 , . . . , 𝑎𝑚 , 𝜇
𝑛(𝑎𝑚+1 , . . . , 𝑎𝑚+𝑛), 𝑎𝑚+𝑛+1 , . . . , 𝑎𝑑), (2.IV)

with ♥ = (−1)𝑚+∑𝑚
𝑖=1|𝑎𝑖 |.

One obtains a proof of Theorem 2.3 by a careful analysis of the boundary components
of the higher dimensional strata of the moduli spaces ℳ𝑑+1(𝑥0 , . . . , 𝑥𝑑; 𝛽) we have just
introduced; ultimately, the signed count of points on the boundary of a 1-dimensional
oriented compact moduli space is zero. For example, when a Morse gradient flow line in a
treed disk “breaks” (on the boundary of a moduli space) through an intermediate critical
point, the treed disk naturally decomposes as the composition of two less complex treed
disks, one stacked upon the other. All such possible decompositions appear as terms in
(2.IV).

3 An HMS comparison functor

We associate to the Lagrangian fibration 𝜋 : 𝑋00 → 𝐵0 a full subcategory ℱsec of the
Fukaya category of 𝑋, whose objects are Lagrangian sections 𝐿 of 𝜋 over 𝐵0. Each such
section is naturally equipped with a Morse function 𝑓𝐿 via restriction of the global Morse
function on 𝑋00. For simplicity, fix a finite collection {𝐿𝑖} ⊂ ℱsec intersecting pairwise
transversely. If 𝐿𝑖 ≠ 𝐿 𝑗 we let Hom(𝐿𝑖 , 𝐿𝑗) be freely generated by the points of 𝐿𝑖 ∩ 𝐿 𝑗 with
coefficients inΛ. If instead 𝐿𝑖 = 𝐿 𝑗 we substitute the Fukaya–Morse algebra of the ordinary
Lagrangian 𝐿 = 𝐿𝑖 as defined by Charest–Woodward [4] (i.e. Hom(𝐿, 𝐿) is generated by
critical points of 𝑓𝐿 with coefficients in Λ—the algebra operations are as above, except
that we now require all Morse flow lines and disk component boundaries to lie wholly in
𝐿). The composition of, for example, morphisms 𝑝 ∈ Hom(𝐿1 , 𝐿2) and 𝑞 ∈ Hom(𝐿2 , 𝐿3)
between distinct Lagrangian sections is the familiar multiplication in the Fukaya category;
we count pseudoholomorphic strips with boundary on 𝐿1 ∪ 𝐿2 ∪ 𝐿3 meeting 𝑝, 𝑞, and all
possible third points of Hom(𝐿1 , 𝐿3), in the usual way.

We are now in a position to see how the comparison functor 𝒞 : ℱsec → mod-𝒜 of
Theorem 1.1 is defined. First, on objects we set

𝐿 ∈ ℱsec ↦→ 𝒞(𝐿) := CM•(𝜋, 𝑓 |𝐿;𝒪an),

this module being generated by the points of crit 𝑓𝐿 with coefficients in 𝒪an. The object
𝒞(𝐿) carries a family of 𝐴∞-module action maps ⊳𝑑 : 𝒞(𝐿)⊗𝒜⊗𝑑 → 𝒞(𝐿) which, according
to the natural analogue of (2.III), now count moduli spaces of treed disks of the kind for
example schematically depicted in Figure 2a. The key modification is that we now allow
the boundary of disk components to lie on the union of a particular fiber and some number
of Lagrangian sections; Morse gradient flow lines are in turn suitably constrained to either
a fiber or particular sections.
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Figure 2: A pair of schematic diagrams of treed disks captioned with the coefficient to
which their counts contribute in the associated module action or morphism. Boundaries
and line segments constrained to a Lagrangian section are shown dotted.

Similarly, a morphism 𝑝 ∈ 𝐿1 ∩ 𝐿2 = Hom(𝐿1 , 𝐿2) gives rise to a morphism 𝒞(𝐿1) →
𝒞(𝐿2) of 𝐴∞-modules by counting treed disks such as those schematically of the type
depicted in Figure 2b or, for the higher order terms of the 𝐴∞-module homomorphism,
analogous configurations with additional inputs. Note that in this particular example both
of the horizontal line segments in Figure 2b are designated Morse flow lines wholly con-
tained in the transverse intersection 𝐿1∩𝐿2—hence their image in any pseudoholomorphic
treed disk must be constant. The requisite 𝐴∞-relations for both the module actions and
module morphisms hold by essentially the same analysis as in the previous section; we
again carefully consider the several ways treed disks such as those schematically depicted
in Figure 2 can break.

4 Future work

Direct natural continuations of this work are twofold; in each case a new insight is required
to upgrade our technology. The first is to develop a method to treat general Lagrangians 𝐿
in 𝑋 which are not sections of the SYZ fibration. Without modification, ordinary counts of
pseudoholomorphic strips with boundary on 𝐿∪𝐹𝑏 do not behave correctly when passing
through a fiber 𝐹𝑏 which has nontransverse intersections with 𝐿.

The second is to handle singular fibers, which currently must be excluded because
of issues of convergence arising locally around the critical values. Namely, the natural
completion used to obtain our sheaf of universal coefficients 𝒪an from local pieces fails
to yield a ring of actual functions in a neighborhood of a singular fiber, and so must be
suitably extended.



More broadly, we seek a suitable notion of noncommutative space as a means to
conveniently globalize our constructions (and to package a mirror), formulated in a way
which emphasizes geometric features. Also, under appropriate hypotheses and because
there is an identification H𝑘(𝐹𝑏 ,R) �

∧𝑘 T𝑏𝐵, the Floer-theoretic obstruction 𝜇0 of 𝒜 may be
viewed as corresponding to a Čech cochain W ∈ C•(𝑋∨0;

∧• T𝑋∨0) valued in polyvector
fields on 𝑋∨0. It is expected (due to results of Fukaya [6] and Irie [9]) that both 𝜇0

and W each correspondingly satisfy an algebraic identity known as the master equation.
I am investigating a promising approach to establish this relation in generality via a
modification of the model described here which incorporates Auroux’s [3] “spliced treed
disks”.
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